
 

1 
 

 

 

 

Date : 30/06/2022 

Deliverable No : D3.1 

Responsible 
Partner 

: ITMLCY 

Dissemination 
Level 

: Public 

D3.1 - Big Data Collection and Analytics Platform and 
Analytics Report 

Ref. Ares(2022)4803814 - 30/06/2022



 

2 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

Short Description 

This deliverable offers comprehensive state-of-the-art research on data pre-processing and 
analytics techniques that took place during the design phase of the project and led to the 
selected techniques relevant to the EnerMan project. Additionally, it offers a complete and 
thorough description of the EnerMan Big data analytics engine in terms of both architecture 
and functionalities. 

 

Project Information 

Project Acronym: EnerMan 

Project Title: ENERgy-efficient manufacturing system MANagement 

Project Coordinator:  
Dr. Ing. Giuseppe D'Angelo 
CRF 
giuseppe.dangelo@crf.it 

Duration:  36 months 

 

Document Information & Version Management 

Document Title: 
D3.1 - Big Data Collection and Analytics platform and Analytics 
report 

Document Type: Report 

Main Author(s):   ITML 

Contributor(s): FHOOE, UNINA, STS, TSI, SIMPLAN, ITMLCY, UOP  

Reviewed by: SUPM, AEGIS 

Approved by: Dr Ing. Giuseppe D'Angelo (CRF) 

Version Date Modified by Comments 

V0.1 14/02/2022 Panagiotis Rodosthenous (ITML) Initial version 

V0.2 13/06/2022 Andrea Rega (UNINA) Draft input to section 2.3.1 

V0.3 15/06/2022 Panagiotis Rodosthenous (ITML) Draft input to section 2.2  

V0.4 15/06/2022 Konstantinos Bouklas (ITML) Draft input to section 2.3 

V0.5 15/06/2022 Mina Marmpena (ITML) Draft input to Chapter 3 

V0.6 15/06/2022 
Andreas Miaoudakis 
(STS) 

Draft input to section 2.3.3 

V0.7 17/06/2022 Mina Marmpena (ITML) 
Draft ready for internal 
review 

V0.8 29/06/2022 
Mina Marmpena (ITML), 
Panagiotis Rodosthenous (ITML), 
Konstantinos Bouklas (ITML) 

Peer review comments 
addressed and ready for 
submission 

V0.9 29/06/2022 Kubra Yurduseven (INTRACT) Format review 

V1.0 30/06/2022 Ing. Giuseppe D'Angelo (CRF) Submitted version 



 

3 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

Disclaimer 

This deliverable contains original unpublished work except where clearly indicated otherwise. 
Acknowledgement of previously published material and of the work of others has been made 
through appropriate citation, quotation, or both.  The publication reflects the author’s views. The 
European Commission is not liable for any use that may be made of the information contained 
therein. 

 

 

 

 

 



 

4 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

TABLE OF CONTENT 

EXECUTIVE SUMMARY ...................................................................................................... 8 

1. INTRODUCTION ......................................................................................................... 9 

2. STATE-OF-THE-ART .................................................................................................. 10 

2.1. Data pre-processing .............................................................................................................. 10 

2.1.1. Data cleaning................................................................................................................. 10 

2.1.2. Data encoding ............................................................................................................... 11 

2.1.3. Data scaling and transformation ................................................................................... 11 

2.1.4. Data resampling ............................................................................................................ 12 

2.1.5. Feature engineering ...................................................................................................... 12 

2.1.6. Feature selection........................................................................................................... 13 

2.2. Data analytics ........................................................................................................................ 13 

2.2.1. Descriptive data analytics, exploratory data analysis and machine learning ............... 13 

2.2.2. Unsupervised learning – Clustering .............................................................................. 14 

2.2.3. Unsupervised learning – Anomaly detection ................................................................ 15 

2.2.4. Supervised learning - Models ........................................................................................ 16 

2.2.5. Supervised learning – ML model performance estimation metrics.............................. 18 

3. BIG DATA ANALYTICS ENGINE .................................................................................. 20 

3.1. Data and artifacts storage infrastructure ............................................................................. 20 

3.1.1. Time series database..................................................................................................... 21 

3.1.2. NoSQL storage ............................................................................................................... 22 

3.1.3. Harmonized CSV cloud storage data and TSDB operations .......................................... 22 

3.1.4. Model registry ............................................................................................................... 23 

3.2. EnerML: Data pre-processing and analytics module ............................................................ 25 

3.2.1. Data pre-processing ...................................................................................................... 25 

3.2.2. Model training and registration .................................................................................... 27 

3.2.3. Model inference and serving ........................................................................................ 32 

3.2.4. Exploratory data analysis and statistics ........................................................................ 33 

3.3. Big Data Analytics Engine API................................................................................................ 37 

3.3.1. FastAPI, tools and standards ......................................................................................... 37 

3.3.2. BDAE API interfaces ...................................................................................................... 39 

3.4. Security ................................................................................................................................. 48 

3.5. Deployment........................................................................................................................... 48 

3.6. Communication with other EnerMan components .............................................................. 48 

3.6.1. EnerMan Intelligent Node ............................................................................................. 48 



 

5 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

3.6.2. Industrial Management Visualization System ............................................................... 48 

3.6.3. Prediction Engine and Simulation Engine ..................................................................... 49 

3.6.4. Sphynx Machine Learning and Analytics Platform ........................................................ 49 

3.7. Current state of the implementation and future steps ........................................................ 50 

4. CONCLUSION ........................................................................................................... 52 

5. REFERENCES ............................................................................................................ 53 

 



 

6 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

TABLE OF FIGURES 

Figure 1: The EnerMan Big Data Analytics Engine Architecture. .......................................................... 20 

Figure 2: Machine learning experiment tracking in MLflow UI. ........................................................... 23 

Figure 3: Model registry in MLflow UI. ................................................................................................. 24 

Figure 4: MLflow flavours and serving integrations. ............................................................................ 24 

Figure 5: MLflow architecture with remote Tracking Server, backend and artifact stores. ................. 25 

Figure 6: The EnerML Data Pre-processing module. ............................................................................ 26 

Figure 7: The pre-processing section of the configuration file defining the pre-processing settings. . 27 

Figure 8: The EnerML model training and registration module. .......................................................... 28 

Figure 9: An example of a complete configuration file for the EnerML training module. .................... 28 

Figure 10: Skeletons of the BaseModel and the Anomaly Detection class that inherits from it. ......... 30 

Figure 11: The EnerML model inference and serving. .......................................................................... 32 

Figure 12: EDA overview. The data used in this example are drawn from the EnerMan YIOTIS pilot. 34 

Figure 13: EDA interactions and correlations profiling. The data used in this example are drawn from 

the EnerMan YIOTIS pilot. ..................................................................................................................... 35 

Figure 14: EDA missing values and sample section. The data used in this example are drawn from the 

EnerMan YIOTIS pilot. ........................................................................................................................... 36 

Figure 15: Timeseries statistics. The data used in this example are drawn from the EnerMan YIOTIS 

pilot. ...................................................................................................................................................... 37 

Figure 16: User interface for the YIOTIS pilot BDAE API. Six main categories of endpoints are provided.

 .............................................................................................................................................................. 40 

Figure 17: User interface for the CRF pilot BDAE API. Endpoint to request a data set from the TSDB.

 .............................................................................................................................................................. 41 

Figure 18: User interface for the CRF pilot BDAE API. The schema of the response defined with Pydantic 

models. .................................................................................................................................................. 41 

Figure 19: User interface for the CRF pilot BDAE API. Example value for a response based on predefined 

Pydantic models. ................................................................................................................................... 42 

Figure 20: User interface for the YIOTIS pilot BDAE API. Swagger UI response includes a Curl request, 

the Request URL and the response body. ............................................................................................. 42 

Figure 21: User interface for the YIOTIS pilot BDAE API. Pandas-profiling EDA endpoint. ................... 43 

Figure 22: User interface for the YIOTIS pilot BDAE API. Timeseries statistical analyses offered in the 

EDA section. .......................................................................................................................................... 43 

Figure 23: User interface for the CRF pilot BDAE API. A GET endpoint to retrieve a pilot's Data Model 

JSON file from the NoSQL storage. ....................................................................................................... 44 

Figure 24: User interface for the YIOTIS pilot BDAE API. Model training endpoint. ............................. 45 

Figure 25: User interface for the YIOTIS pilot BDAE API. An endpoint in the Predictions section for the 

anomaly detection machine learning task. ........................................................................................... 45 

Figure 26: User interface for the YIOTIS pilot BDAE API. A response with predictions for the anomaly 

detection task on batch data. ............................................................................................................... 46 

Figure 27: User interface for the YIOTIS pilot BDAE API. Feature importance estimation to detect 

influential variables. .............................................................................................................................. 47 

Figure 28: User interface for the YIOTIS pilot BDAE API. Code-generated API documentation. .......... 47 

Figure 29: Integration with the EnerMan System Analysis and Prediction. ......................................... 51 

 

 

 



 

7 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

LIST OF TABLES 

Table 1: Training configuration file structure. ...................................................................................... 29 

Table 2: Machine learning models and algorithms that can be supported by the BDAE. .................... 30 

 

ABBREVIATIONS TABLE 

AI artificial analysis 

API application programming interface 

ASGI asynchronous server gateway interface 

BDAE  big data analytics engine 

COF connectivity outlier factor 

CPU central processing unit 

CRUD create, read, update and delete 

CSV comma-separated values 

DBSCAN density based clustering 

EDA exploratory data analysis 

GBM gradient boosting model 

GMM gaussian mixture model 

GPU graphics processing unit 

GUI graphical user interface 

HTML hypertext markup language 

IETF internet engineering taskforce 

JSON JavaScript Object Notation 

kNN k-nearest neighbors 

LOF local outlier factor 

MAD median absolute deviation 

ML machine learning 

MLP multilayer perceptron 

NaN not a number 

ORM object relational mapping 

PCA principle component analysis 

SFTP secure file transfer protocol 

SOTA state-of-the-art 

SQL structured query language 

SSH secure shell protocol 

SVM support vector machines 

TFM temporal fusion transformer 

TSDB time series data base 

URL uniform resource locator 

UTC universal time coordinated 

YAML yet another markup language 

 



 

8 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

EXECUTIVE SUMMARY 

Big data applications are steadily making their way in industrial enterprises, promising to transform 

their core processes, introduce new business models and create value. Organizations that embrace 

such technologies early on will benefit and maintain a competitive edge. However, the successful 

implementation of such applications can be a highly complex and daunting task. Big data are in most 

cases unstructured, imperfect, and challenging to manage in terms of infrastructure due the high 

volumes or velocity of their generation and accumulation. Additionally, efficient predictive algorithms 

can be time-consuming and capital-intensive to build, test, deploy and maintain, and most 

manufacturers lack such in-house expertise.  

This deliverable presents the EnerMan Big Data Analytics Engine (BDAE), an all-encompassing solution 

for data management, processing and analytics that aims to abstract users from the low-level 

complexities of these functionalities.  

In the first part of this deliverable, we provide an extended literature review on state-of-the-art 

methods for data pre-processing-processing. Pre-processing-processing is a critical operation in big 

data applications because data quality has a direct impact on the performance of the predictive 

algorithms. The review proceeds with a thorough presentation of state-of-the-art machine learning 

algorithms and analytics, focusing on the methods that can be leveraged to facilitate the development 

and operation of energy sustainable industrial systems, e.g., regression models, anomaly-detection, 

and clustering.  

In the second part, we provide an analytical overview of the Big Data Analytics Engine in terms of 

architecture, infrastructure, and implementation. The infrastructure comprises of several data 

storages to accommodate not only the extensive requirements for data management, but also the 

demands for efficient organization of the metadata used from the analytics operations, as well as the 

products of these operations which are the serialized predictive models. The section also presents the 

core pre-processing and analytics module, EnerML, which was designed and implemented based on 

the state-of-the-art methods presented in the first part to provide training and inference services. The 

last part of the implementation is the Big Data Analytics Engine Application Programming Interface 

(API), an interface that can serve all the above offerings in an efficient and user-friendly way. The 

second part concludes by highlighting aspects such as security and deployment, the connection with 

other EnerMan components, the current state of the implementation and the future steps.  
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1. INTRODUCTION 

Big data applications have drawn the interest of many fields where data management and processing 

are of critical importance. For example, the governmental sector [3] and supply-chain management 

systems are utilizing big data techniques and benefit from the positive outcomes[4]. Interestingly, big 

data applications are also adopted in the medical sector, as they provide solutions for data storage 

bottlenecks and enhance heuristic methods in search of efficient treatment processes for patients [5]. 

Most importantly, big data are used in the industrial sector, considering Industry 4.0, where data from 

IoT sources are managed and analysed in an effort to make the industrial processes more efficient, 

cost-effective and faster [6].  

However, along with the opportunities arising from operationalizing big data, there are significant 

challenges that need to be addressed. Such challenges are related predominantly to the heterogeneity 

of the data [7], the various sampling frequencies [8], and the different formats [9]. Additionally, some 

data could be not only unsynchronized [10] but also structured or unstructured [11], which leads to 

different database storage requirements and handling/pre-processing of the data. All these 

parameters should be taken into consideration when implementing a big data analytics mechanism.  

Early in the life of the project and through constant communication with the end-users, the EnerMan 

consortium aspired to understand exactly what techniques and methodologies would be required in 

order to transform the collected data into a usable cohesive dataset that would be suitable to 

extrapolate a conclusion on the relevant operations and to try improving the processes.  

The consortium in the context of Task 3.1, followed comprehensive state-of-the-art research on 

current techniques for big data pre-processing and analytics in order to set the stage and be able to 

select optimal techniques to cover the objectives of the project. With that in mind, this document 

presents the techniques that were researched and taken into consideration.  

In the EnerMan project, sensor measurements from in-field deployed sensors in the manufacturing 

space are collected and, after the first layer of harmonization, are stored in the Big Data Analytics 

Engine. These measurements are combined with historical data and data from external sources to 

create a heterogeneous data set suitable for both simulation of the manufacturing space or/and 

processes. Furthermore, the aforementioned data set is suitable for future predictions on aspects such 

as energy consumption to allow the user a holistic view spanning from past to current and finally 

future. Finally, this data set and accompanied extracted information (e.g., anomalies) can also be 

presented to the user.  

The EnerMan Big Data Analytics Engine has been designed and developed with the aim to provide an 

all-encompassing solution to manage the EnerMan data flows and support all the stages of the 

machine learning lifecycle, from data pre-processing to model training and serving, to enable the end-

users to create value from their data.  
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2. STATE-OF-THE-ART 

In this section, a SOTA analysis will be presented showcasing the data pre-processing and data analytic 

techniques that are being widely used, extracting valuable information for supporting and enriching 

the techniques and methods that were developed in the EnerMan project.  

Starting from the former, it constitutes an important first step toward the efficient use of data and the 

proper application of machine learning mechanisms. Data pre-processing is used to transform the raw 

data into an adapted or relevant format for the intended exploitation of the data.  

On the other hand, data analytics aims at helping in making sense of data. This can be achieved by 

analysing raw data for trends or other insights. The data analysis can be descriptive, diagnostic, 

prescriptive, and predictive [1] [2]. Thus, it is also an important step for extracting information from 

raw data that can be of great value for upcoming post-processing procedures. In the following 

sections, an overview of the methods related to data pre-processing and analytics are presented.  

2.1. Data pre-processing 

Data pre-processing is an essential step when it comes to the utilization of data coming from various 

sources. The data pre-processing is required to take place before consuming the data for the actual 

processing/analysis [12]. This technique involves the transformation of raw data, originating from 

different sources, into an understandable, simplified, and uniform format. Data pre-processing could 

be applied particularly to situations where raw data are not readily operational, e.g., data mining [13] 

[14], and in machine learning or other science tasks which cannot take place unless the data are 

processed in a suitable way before application. Once the data are gone through this pre-processing 

preparation and the quality of the resulted dataset is validated [15], the machine learning methods 

can be applied [16]. This validation can be achieved by utilizing neural network models [17]. During 

the data pre-processing a check for missing values, noisy data, and other inconsistencies is carried out 

[18]. In this way, the datasets are cleaned and formatted properly before being used in the machine 

learning model [19].  

2.1.1. Data cleaning 

Missing Values 

Missing values or empty records in a dataset (also known as blanks or NaN) limit the proper 

functionality and application of machine learning algorithms, as valuable information or patterns 

might be lost. The simplest way to tackle the problem is by completely removing the data points or 

the features that contain missing values. This method ensures that the information remaining in the 

data is not contaminated with null values, but it can also result in significant loss of useful information. 

Another way of dealing with missing values is the imputation of these specific cells. In particular, 

numeric and categorical imputation parameters can be used in this regard [12] [20]. Common 

imputation methods are replacement with the column’s mean value for numeric features or a 

constant for categorical features.  

Data Types 

The features in a dataset can be associated with different data types, for example numeric, categorical, 

or Datetime. It is important that data types are correct since several processes highly rely on the data 

types of the features. For example, missing values in a dataset can be imputed incorrectly. These 

features can be overwritten or ignored during the model training [12]. 
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Outliers 

An outlier in a set of data could be any value that is considered abnormal compared to the rest of the 

values in that dataset. In some cases, the existence of outliers is an indication of bad/incorrect data 

that originate from cascaded errors and these data must be removed from analysis to come. In other 

cases, outliers can indicate valid deviations in the dataset (e.g., in scientific measurements) that mean 

a peculiar behaviour/trend. Before training any machine learning model, the outliers in the dataset 

need to be identified and removed if needed. The identification can be achieved via the PCA linear 

dimensionality reduction using the Singular Value Decomposition technique. The proportion of 

outliers can be controlled by using a threshold value [21]. Another method for identifying outliers is 

the Mean and Standard Deviation Method, where the mean and standard deviation of the residual 

values are calculated and compared. The outlier in this case identified by observing how many 

standard deviations away a value is from the mean value (the number of standard deviations can be 

controlled using a threshold value). The Median and Median Absolute Deviation Method is another 

widely used method for outlier identification that involves the calculation of the median of the 

residuals. Then, the absolute value is calculated as the difference between each historical value and 

the median. Thus, a new median is formed which is then multiplied be an empirically derived constant 

yielding the median absolute deviation (MAD). As a result, an outlier is identified in the case of a value 

being a specific number of MAD away from the median of the residuals. A threshold is again used to 

set the minimum number of MAD [22].  

2.1.2. Data encoding 

One-Hot Encoding 

Features with categorical type in a dataset contain ordinal or nominal label values instead of 

continuous numbers, which make the machine learning algorithms incapable of directly dealing with 

such features and thus a transformation into numeric values is required before the model training. 

One-Hot encoding (dummy encoding) is considered the most common type of categorical encoding. 

This involves the transformation of each categorical level into a separate feature in the dataset (with 

binary values 0 or 1). One-Hot encoding could be ideal for features with nominal categorical data 

(which cannot be ordered). This can be considered a mandatory step for ML application. 

Ordinal Encoding  

In the case of ordinal data (with intrinsic levels), Ordinal encoding is applicable. In this way, a dictionary 

is accepted, containing the feature names and the levels (in ascending order). 

2.1.3. Data scaling and transformation 

Normalization 

As part of the data preparation that needs to take place before applying a machine learning model, 

the normalization can turn out to be essential. This technique involves the rescaling of the values of 

numeric columns in the dataset while avoiding (a) any distorting differences in the ranges of values 

and (b) any loss of information [12]. The most popular method of normalization includes the scaling 

and translation of each feature individually within the range 0 – 1, the scaling and translation of each 

feature individually with a maximal absolute value of each feature equal to 1.0. This method does not 

shift/centre any data and thus the sparsity is maintained. Another method is the scaling and 

translation of each feature individually according to the Interquartile range. 

Feature Transform 

Feature transformation is considered a more radical technique than the normalization methods 

described above. Specifically, the transformation of the features changes the shape of the distribution 

in a way that the transformed data can be represented by a normal or approximate normal distribution 
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[23]. The feature transformation may include the application of a power transformer that makes the 

data more normal/Gaussian-like. This particular method is beneficial for addressing modelling issues 

relevant to heteroscedasticity or situations where normality is required. Another method is the 

quantile transformation [24]. This is a non-linear transformation that may distort the linear 

correlations between variables measured at the same scale. 

Target Transform 

This kind of transformation is similar to the feature transformation mentioned above, however, 

following this method will change the shape of the distribution of the target variable instead of the 

feature. This method is applied separately from the feature transformations. One of the characteristics 

of this method is that it requires input data to be strictly positive when supporting both positive and 

negative data. In the case where the variable contains negative values, the method is internally forced 

to avoid any exceptions [12]. 

2.1.4. Data resampling 

Data resampling technique refers to the repeated drawing of samples from a dataset and the 

utilization of these samples to carry out a statistical analysis or to address specific problems in a 

predictive model (e.g., imbalanced data). The four main resampling methods are the randomization, 

Monte Carlo, bootstrap, and jack-knife [25]. When referring to sampling or resampling, the sampling 

rates are also an important parameter to take into consideration.  

Up sampling 

Up sampling is a technique of increasing the data sampling rates by inserting zero-valued samples 

between the actual samples. This is also known as interpolation and it can increase the resolution, 

enhances anti-aliasing and reduces noise [26]. 

Down sampling 

On the contrary, down sampling refers to the reduction of the sampling rates by removing samples 

from the original set of data. It is important, however, that the length of the signal must be maintained. 

This technique is similar to compression of data, as the data are compressed in lower bandwidths and 

sample rates [27].  

2.1.5. Feature engineering 

Feature engineering is known as the process of transforming raw sets of data into features, aiming at 

utilizing them later on in predictive models based on machine learning on any form of statistical 

modelling. Among the wide list to techniques, in ENERMAN project we consider methods such the 

polynomial features, the group features and the creation of clusters.  

Polynomial Features 

When it comes to the dependent and independent variables in machine learning applications, the 

relationship between the two is not always linear. The creation of new polynomial features can handle 

this complexity by capturing that non-linearity in the first place [16]. This could be implemented by 

creating the features based on all polynomial combinations existing within the numeric features in a 

dataset, and up to a pre-defined degree. Additionally, the degree of polynomial features must be 

defined, e.g., in the case of a two-dimensional input of the form of [𝑎 , 𝑏], the degree equals 2 and can 

be expressed as [1, 𝑎, 𝑏, 𝑎2, 𝑏, 𝑎𝑏, 𝑏2]. Lastly, a sparse matrix of polynomial and trigonometric features 

needs to be compressed. The remaining features are left behind. 

Group Features 

Considering a dataset with related features (piece of data recorded at fixed time intervals), new 

statistical features for such a feature group can be generated. The new features can be characterized 



 

13 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

by the following types: mean, median, variance, and standard deviation [28]. The methods for feature 

grouping include features in a dataset with similar characteristics that are used for statistical feature 

creation. In the case of related numeric features, the column names’ list is passed under the new 

group in order to extract statistical information. Then, the name of the new group can be passed into 

a parameter that holds the names of the groups.  

Create Clusters 

The existing features from a dataset can be used with clustering analysis to craft new features. 

Clustering is an unsupervised learning technique which is used on its own to offer insights to the data 

(more details in section 2.2.2 Unsupervised learning – Clustering), but it can also be used to generate 

values for a new feature. This is achieved by using the cluster label assigned to each datapoint as a 

value for a new categorical feature. [29]. 

 

2.1.6. Feature selection 

In the process of developing a predictive model, it is desirable to have as few variables as possible to 

deal with, as this can significantly reduce the computational requirements and elapsed time. Feature 

selection process facilitates exactly that by reducing the input variables. A few measures for feature 

selection might be the Bayesian error rate, the Laplacian score and the Fisher score. Additionally, 

supervised feature selection is also used [30]. In the context of ENERMAN, we consider the Principal 

Component Analysis (PCA) which is an unsupervised machine learning technique used for data 

dimensionality reduction [21]. This can be achieved by compressing the feature space by (a) 

identifying the subspace that captures most of the information and (b) projecting the original feature 

space into lower dimensionality [31]. It is possible to decompose all datasets efficiently using the linear 

PCA technique. The PCA, however, can cause information loss [32]. Additionally, the linear PCA 

involves the reduction using Singular Value Decomposition. Kernel and incremental methods are also 

available [33]. Finally, the number of components needed must be defined. 

2.2. Data analytics 

In its broad sense, data analytics is defined as the process of analysing raw data to derive conclusion 

about the given information. It utilizes a variety of techniques and processes that have been 

automated into mechanical processes and algorithms that work over the raw data for human 

consumption and understanding. As is the case of EnerMan, a successful data analytics initiative will 

provide a clear picture of where we are (present/live data), where have we been (historical data) and 

a project of where we are going or where we should go (prediction models).  

2.2.1. Descriptive data analytics, exploratory data analysis and machine learning 

Among the tools for the description and exploration of energy consumption data, the recent statistical 

literature on functional data analysis provides methods for the analysis of complex data such as images 

and curves, which more and more often arise in the modern Industry 4.0 framework. Statistical models 

can be built on this type of data, with the aim to forecast the energy consumption daily profiles or to 

build control chart to detect unusual conditions in the manufacturing process when special causes of 

variation act on the energy consumption. Before fitting models, descriptive data analytics of functional 

data can be performed by calculating mean functions, correlation surfaces, and visualization tools such 

as spaghetti plot of the individual functional data are useful to help the statistical analysis. 

Machine learning is a branch of AI and computer science that its well established and widely used 

nowadays. It focuses on the use of data and algorithms to imitate the same way a human would learn 

and gradually adapt leading to a gradually improved accuracy. It is an important aspect of data science 
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which through statistical methods, trains algorithms in order to make classifications or predictions 

uncovering and locating key insights on the given data set.  

 

2.2.2. Unsupervised learning – Clustering  

A subcategory of machine learning is unsupervised learning and is used to analyse and cluster 

unlabelled datasets. These algorithms are designed to discover hidden patterns or data groupings 

within the data set without the need of human intervention. The ability to discover similarities or 

differences in information make it the ideal solution for exploratory analysis which is the main use of 

the EnerMan project. Clustering and anomaly detection are of the most widely used unsupervised 

learning methods.  

Clustering can be defined as the process of analysing a data set and then separating the data points 

into groups that share common traits and assign them into clusters. It is one of the most common and 

popular data science techniques and can be further divided into 2 subgroups, firstly, the hard 

clustering where each data point either belongs to a cluster or it does not, and secondly, the soft 

clustering where the data points are assigned a probability to belong in a number of clusters.  

Following we will provide examples of unsupervised learning clustering methods that were deemed 

the most relevant to EnerMan.  

k-means clustering  

This is a common example of a hard clustering method where data points are assigned int K groups 

with K representing the number of clusters based on the distance of each group’s centroid. [34]  The 

data points closest to a given centroid will be clustered under the same category. A larger K value will 

be indicative of smaller groupings with more granularity whereas a smaller K value will have larger 

groupings and less granularity.  

Meanshift clustering 

Another popular clustering method for unsupervised learning is meanshift clustering. It is widely used 

in real-world data analysis with its main advantage being that it is nonparametric and so it does not 

require a predefined shape of the clusters in the feature space [35]. Simply speaking, “mean shift” is 

equal to “shifting to the mean” in an iterative way. In the algorithm, every data point is shifting to the 

“regional mean” step by step and the location of the final destination of each point represents the 

cluster it belongs to. In order to locate the mean point of the entire data set we calculate the mean 

point of the features included in the data set. For example, if a data set has 2 features the mean point 

would be calculated by the arithmetic mean of feature 1 and feature 2.  

Hierarchical clustering 

Hierarchical clustering methods are classified into divisive (top-down) and agglomerative (bottom-up), 

depending on whether the hierarchical decomposition is formed in a bottom-up or top-down fashion 

[36]. An agglomerative clustering starts with a singleton (one object) cluster and then successively 

merges pairs of clusters until all clusters have been merged into one big cluster containing all objects. 

Divisive clustering is a reverse approach of agglomerative clustering; it starts with one cluster of the 

data and then partitions the appropriate cluster. Although hierarchical clustering is easy to implement 

and applicable to any attribute type, they are very sensitive to outliers and do not work with missing 

data. Moreover, initial seeds have a strong impact on the results (involving lots of arbitrary decisions). 
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Density-based spatial clustering 

Density-based clustering (DBSCAN) is the method of identifying distinctive groups or clusters in a 

dataset relied on the notion that a cluster is a dense contiguous region in the total data space, which 

is separated from other clusters by adjacent areas of relatively lower data density. The data points 

having a comparatively lower object density in the separating regions are typically labelled as noise or 

outliers. DBSCAN [37] is deemed as one of the most powerful and most cited density-based clustering 

algorithms which can identify with significant accuracy the clusters of random shape and size in large 

databases corrupted with noise. One of the main advantages of the DBSCAN algorithm is that 

predetermination of the number of clusters is not required on datasets. As the DBSCAN algorithm can 

handle the noise points correctly and effectively, it is more applicable to find a group surrounded by 

noise as well as different other group [38]. 

Gaussian mixture model clustering 

Gaussian mixture models are a probabilistic model for representing normally distributed 

subpopulations within an overall population. Mixture models in general don't require knowing which 

subpopulation a data point belongs to, allowing the model to learn the subpopulations automatically. 

Since subpopulation assignment is not known, this constitutes a form of unsupervised learning. GMMs 

have been used for feature extraction from data sets and have also been used extensively in object 

tracking of multiple objects, where the number of mixture components and their means predict object 

locations. Gaussian mixture model is parameterized by two types of values, the mixture component 

weights, and the component means and variances/covariances. If the component weights aren't 

learned, they can be viewed as an a-priori distribution over components. If they are instead learned, 

they are the a-posteriori estimates of the component probabilities given the data [39]. 

2.2.3. Unsupervised learning – Anomaly detection 

Anomaly detection in machine learning can be defined as identifying data points withing a data set 

that do not fit normal patterns or behaviour. It can be used in many cases such as identifying outliers 

that can have adverse effects on the normal operation of a system or to exclude instances that might 

indicate abnormal behaviour uncharacteristic of the system in question. The following common 

anomaly detection methods, automate detection and moreover make it more effective especially 

considering very large data sets as the one expected to be analysed in EnerMan.   

The rest of this section focuses on some of the most widely used methods for the unsupervised 

anomaly detection task.  

 

Clustering based local outlier 

Clustering-based outlier detection methods, in general, make the assumption that data objects belong 

to large and dense clusters. On the other hand, outliers belong to small or sparse clusters, or they do 

not belong to clusters all together meaning that outliers are identified by the relationship between 

objects and clusters (whether they belong to a cluster or not). If an object does not belong to any 

cluster, then its identified as an outlier. Additionally, if there is a large distance between the object 

and the cluster to which it is closest, then it is an outlier. Finally, if the object part of a small or sparse 

cluster, then all the objects in that cluster are outliers. 

Local outlier factor 

In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, 

Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by 

measuring the local deviation of a given data point with respect to its neighbours [40]. The local outlier 

https://brilliant.org/wiki/a-priori/
https://brilliant.org/wiki/a-posterior/


 

16 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

factor is based on the idea of a local density, where locality is given by k nearest neighbours, whose 

distance is used to estimate the density. By comparing the local density of an object to the local 

densities of its neighbours, one can identify regions of similar density, and points that have a 

substantially lower density than their neighbours. The later points are considered to be outliers. The 

local density is estimated by the typical distance at which a point can be "reached" from its neighbours. 

The definition of "reachability distance" used in LOF is an additional measure to produce more stable 

results within clusters [41].  

Connectivity based outlier factor 

Identifying abnormality in any industrial data set is considered as one of the major challenges for data 

scientists [40]. One of the many techniques for outlier identification is connectivity-based outlier 

factor and it is an improved version of LOF (local outlier factor) technique. The COF algorithm is similar 

to LOF but consider the density estimation on a different way. COF estimates the local density of the 

neighbourhood with an approached called the chaining distance. It assumes the data points to follow 

a linear distribution and so the chaining distances are the minimum of the total sum of the distances 

linking all neighbours. The above makes this method suitable and with good accuracy when used for 

data sets that display linear correlation.    

K-nearest neighbours detector 

kNN is a supervised ML algorithm frequently used for classification problems (sometimes regression 

problems as well) in data science [42]. It is one of the simplest yet widely used algorithms with good 

use cases such as building recommender systems, face detection applications etc. This is a non-

parametric algorithm in which the relation of data point to a group is determined by the set of the k 

nearest neighbours, commonly by calculating the Euclidean distance in an n-dimensional feature 

space. The data point under evaluation is classified as part of the group with the most common 

neighbours among its k nearest ones. kNN is a supervised ML algorithm but when used for anomaly 

detection it takes an unsupervised approach. There is no actual learning involved in the process of this 

algorithm or labelling of outliers or non-outliers in the dataset rather just identifying outliers based on 

threshold values. Data scientists using the algorithm, decide the cut-off values and thus allowing the 

algorithm to identify outliers.  

One class SVM detector 

One class SVMs attempt to learn the boundary that achieves the maximum separation between the 

points and the origin [43]. A one class SVM uses an implicit transformation function 𝛷(. ) Defined by 

the kernel to project the data into a higher dimensional space. The algorithm then learns the decision 

boundary that separates the majority of the data from the origin and only a small fraction of data 

points are allowed to lie on the other side of the decision boundary and these are considered outliers. 

2.2.4. Supervised learning - Models 

Supervised machine learning is the machine learning approach that translates an input to an output 

based on known input-output training pairs. It uses labelled training data and a series of training 

examples to infer a function. Each method in supervised learning is made up of an input object (usually 

a vector) and a desired output value (also called the supervisory signal). A supervised learning 

algorithm examines the training data and generates an inferred function that can be applied to fresh 

cases.  

Supervised ML models 

A supervised ML algorithm will be able to accurately determine the class labels for unseen cases in the 

best-case scenario. Such models include: 
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Linear Models 

Linear models tend to be the simplest class of algorithms, and work by generating a line of best fit for 

the training date. They’re not always as accurate as newer algorithm classes, but are still used quite a 

bit, mostly because they’re fast to train and straightforward to interpret. 

Decision trees 

Decision Trees [44] are a type of Supervised Machine Learning based on the splitting of the training 

dataset according to a specific parameter in a recursive way. This wat a tree graph is generated having 

nodes as the points where the dataset was split (decision nodes) and leaves are the decisions taken in 

the node split.  A great advantage for the Decision tree models is that they offer great explain ability 

as the model’s results are easy to visualise and can be understood without requiring statistical 

knowledge 

Random Forest 

Random Forest [45] is an algorithm that can be used for classification and regression tasks. It combines 

the results of many different decision trees to make the best possible decisions. The learning algorithm 

is one of the methods of supervised learning and can be used in machine learning. The procedure is 

relatively simple and offers short training times. It is an ensemble learning method for classification, 

regression and other tasks that operates by constructing a multitude of decision trees at training time. 

For classification tasks, the output of the random forest is the class selected by most trees. The 

Random Forest algorithm provides rules on how to generate the many different decision trees and 

then combines them using a special ensemble method to achieve an overall result. Which properties 

and decision criteria the individual decision trees use to reach their results is based on a random 

principle and differs from decision tree to decision tree. A “forest” of random, slightly different 

decision trees is created. As a small independent model, each decision tree contributes to the overall 

decision. The random variance of the trees increases the result and prediction accuracy of the random 

forest algorithm. The way in which the decision trees are to be constructed and how the random forest 

is trained is variable. For example, the structure or the maximum depth of the decision trees can be 

selected. 

Extra trees 

Extra Trees [46] is an ensemble machine learning algorithm that combines the predictions from many 

decision trees. It is related to the random forest algorithm, with some differences during the training 

phase. It consists of randomizing strongly both attribute and cut point when choosing data while 

splitting a tree node. In the extreme case, it builds totally randomized trees whose structures are 

independent of the output values of the learning sample. The strength of the randomization can be 

tuned to problem specifics by the appropriate choice of a parameter. 

LightGBM 

LightGBM [47] is a gradient boosting framework that uses tree-based learning algorithms. It is to be 

distributed and efficient with the following advantages: faster training speed and higher efficiency; 

lower memory usage; better accuracy; support of parallel, distributed, and GPU learning; capable of 

handling large-scale data. Gradient boosting is a machine learning technique for regression and 

classification problems, which produces a prediction model in the form of an ensemble of weak 

prediction models, typically decision trees. LightGBM is called “Light” because of its computation 

power and giving results faster. It takes less memory to run and is able to deal with large amounts of 

data. Several parameters of LightGBM can be tuned of speed up, increase accuracy or deal with the 

produced model overfitting. 
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CatBoost 

CatBoost [48] is based on gradient boosted decision trees. It is a new open-sourced gradient boosting 

library that successfully handles categorical features and outperforms existing publicly available 

implementations of gradient boosting in terms of quality on a set of popular publicly available datasets 

The library has a GPU implementation of learning algorithm and a CPU implementation of scoring 

algorithm, which are significantly faster than other gradient boosting libraries on ensembles of similar 

sizes. During training, a set of decision trees is built consecutively. Each successive tree is built with 

reduced loss compared to the previous trees.  

2.2.5. Supervised learning – ML model performance estimation metrics 

 

Binary classification (f1-score) 

The F1 score is a machine learning metric that combines the precision (the proportion of positive 

identifications that was correct) and recall (the proportion of actual positives that were identified 

correctly) of a classifier into a single metric by taking their harmonic mean [49]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙
 

 

Multiclass classification (f1-score, micro-averaged) 

By micro-averaging the f1-score, we aggregate the contributions of all classes to compute the average 

metric and compensate for possible class imbalance, i.e., you may have many more examples of one 

class than of other classes. In such a case the micro-averages F1-Score is calculated on the prediction 

of all classes as [50]  

𝑚𝑖𝑐𝑟𝑜 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +
1
2

(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

Regression (R2) 

R-squared is a statistical metric that represents the proportion of the variance for a dependent 

variable that's explained by an independent variable or variables in a regression model. R2 provided 

an insight for the accuracy of fit of a model and can be calculated as [51]:  

 

𝑅2 =
Sum of squared regression

sum of squares total 
= 1 − 

∑(�̂�𝑖 − �̅�)2

∑(𝑦𝑖 − �̅�)2
 

where   y-hat represents the prediction or a point on the regression line, y-bar represents the mean 

of all the values and yi represents the actual values or the points. Whereas correlation explains the 

strength of the relationship between an independent and dependent variable, R-squared explains to 

what extent the variance of one variable explains the variance of the second variable. Therefore, if the 

R2 value of a model is calculated as 0.50, that means that approximately half of the observed 



 

19 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

prediction variation can be explained by the model input vectors. In simple words, the closer the value 

of R2 is near to 1, the better is the model. 

Balanced accuracy 

Balanced accuracy is a metric we can use to assess the performance of a classification model. 

It is calculated as: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)  ÷  2 

where:  

Sensitivity: The “true positive rate” – the percentage of positive cases the model can detect. 

Specificity: The “true negative rate” – the percentage of negative cases the model can detect. 

This metric is particularly useful when the two classes are imbalanced – that is, one class appears much 

more than the other. 

Explained variance 

In statistics, explained variance or explained variation is a metric for the exploitability of a ML model 

and is calculated by the difference of the expected and predicted values of a model. Therefore, the 

explained variance measures the percentage of the variability of the predictions of a ML model. In 

other words, it is the portion of the model's total variation that can be accounted for by actually 

present factors in the prediction (input vector) rather than model’s error variance. The 

complementary part of the total variation is called unexplained or residual variation. 

Cross validation 

Cross-validation is an approach that combines (averages) the fitness measures of prediction of an ML 

predictive model in order to obtain a more accurate estimate of model’s performance. The initial step 

in cross validation includes the split of the train dataset into two sub-datasets where one is used for 

the initial model training (training set) and the other for the validation analysis (testing set) of the 

trained model towards its performance evaluation. This process is repeated with different splits on 

the initial datasets (i.e., using different data for training and testing each time) and the performance 

validations (based on each test set) are merged (averaged) to produce a more accurate estimate of 

the predictive performance of the model 
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3. BIG DATA ANALYTICS ENGINE 

The main task of the Big Data Analytics Engine (BDAE) is to contribute to the creation of value from 

the EnerMan data. This is achieved by providing robust data management operations including data 

ingestion, annotation and retrieval, but also a framework to support state-of -the-art methods for data 

pre-processing and analytics. The latter is the EnerML module which lies in the core of the BDAE. It 

supports not only the state-of-the-art methods presented in the previous section, but potentially 

many more since it is designed to be flexible, extensible and modular. The module is presented in 

detail in section 3.2 EnerML: Data pre-processing and analytics module. The other prominent entities 

supporting the BDAE are the databases. Depending on the data structure, representation and 

purpose, different databases are employed to facilitate the required operations. The storage 

infrastructure is presented at length in the following section (3.1 Data and artifacts storage 

infrastructure).  

From an overall point of view, the BDAE architecture is introduced in Figure 1, with a diagram that 

abstracts the outline of the system, its relationships with other EnerMan components, dataflows and 

boundaries. With respect to the relationships, the diagram only depicts the communications and data 

flow with the EnerMan components that have been integrated in the current state of implementation. 

However, more connections are expected as the integration progresses (for more details see section 

3.6 Communication with other EnerMan components). In the next sections, each internal component, 

as well as the relationships with the external components, will be presented from several architectural 

viewpoints.  

 

Figure 1: The EnerMan Big Data Analytics Engine Architecture. 

 

3.1. Data and artifacts storage infrastructure 

Big data applications introduce significant data management challenges which cannot be addressed 

with traditional tools. The EnerMan platform has to support complex and high-volume data flows and 

persist or retrieve data in efficient and safe ways. Some of the prominent challenges are related to the 
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data representation (structured, unstructured), formats, volume, velocity, and heterogeneity of the 

data flow.  The data storage infrastructure for BDAE was designed taking into account these challenges 

in the context of the EnerMan solution. Our goal is to incorporate robust cutting-edge solutions which 

are scalable, secure, and integrate effortlessly.  In the following sections, we present the main storage 

components involved in the BDAE architecture.  

 

3.1.1. Time series database 

Time series databases (TSDBs) are optimized to store and retrieve time series data, i.e., sets of data 

points associated with a timestamp. Time series data are sequential, collected over time intervals, and 

allow us to track changes over time, from milliseconds, to days, or even years. TSDBs are the fastest-

growing category of databases today since they offer scalability and usability. Since time series can 

accumulate rapidly, TSDBs can offer out of the box functionalities to improve scalability, ingest rate, 

query latency, and data compression. In terms of usability, TSDBs offer built-in functions for flexible 

retention policies, time aggregations and other operations that make time series analysis easier.  

EnerMan data are primarily time series, collected from multiple sensors and IoT devices. In this setting, 

the value of a TSDB is enormous. The BDAE cloud infrastructure includes a TimescaleDB1, a time series 

database which is used to store and retrieve pilots’ time-stamped data. TimescaleDB is an open-source 

relational database, implemented as an extension to PostgreSQL2. This means that the functionality 

and reliability of SQL is available, while extra TSDB are introduced on top of it using abstractions such 

as hypertables and chunks. TimescaleDB also enables a distributed and parallelized setup, with fast 

queries, ingestion, and compression capacities.  

Other alternatives that have been ranking high3 in the TSDBs landscape include InfluxDB4, Graphite5, 

Prometheus6 and Kdb+7. We have considered these solutions and compared their features and 

characteristics in the light of the EnerMan solution requirements. We initially excluded Kdb+ since it 

is not an open-source solution. Our next criterion was the partitioning features, i.e., the ability to store 

data on different nodes, since in the EnerMan context, data volumes are anticipated to be high, and a 

distributed database can be of critical importance. This requirement excluded Graphite. The final 

choice was decided based on the compatibility with PostgreSQL, an open-source relational database 

management system with a long history of reliability, extensibility, scalability, security, and SQL 

compliance. TimescaleDB, is developed as an extension on top of PostgreSQL, thus it is fully 

compatible with SQL and offers fine grained access rights. InfluxDB or Prometheus, each has its own 

query language, and this would potentially require more advanced training for the maintainers of the 

EnerMan solution. In the BDAE architecture, TimescaleDB is deployed in the cloud and used as a sink 

for the data ingested from the edge nodes. TSDB data are retrieved with GET requests via the BDAE 

API. Create, read, update, and delete (CRUD) operations are implemented mainly with object–

relational mapping (ORM) methods in Python using the SQLAlchemy8 toolkit (other alternatives 

considered included Django and  ORM￼ and Peewee￼, nonetheless SQLAlchemy was preferred for 

 
1 TimescaleDB: https://www.timescale.com/ 
2 PostgreSQL: https://www.postgresql.org/ 
3 DB-Engines Ranking of Time Series DBMS: https://db-engines.com/en/ranking/time+series+dbms 
4 InfluxDB: www.influxdata.com/products/influxdb-overview 
5 Graphite: https://github.com/graphite-project/graphite-web 
6 Prometheus: https://prometheus.io/ 
7 Kdb+: https://kx.com 
8 SQLAlchemy: https://sqlalchemy.org 

https://www.timescale.com/
https://www.postgresql.org/
https://sqlalchemy.org/
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its compatibility with the API framework we adopted (i.e., FastAPI9 section 3.3.1), and secondly using 

the Psycopg￼, the de-facto PostgreSQL Python￼ 10￼TimescaleDB powered operations also include 

hyperfunctions for gap filling and interpolation, time buckets extraction, resampling, and frequency 

analysis. Furthermore, we use two tools to directly monitor and interact with the database server: 

psql, a command line tool built in PostgreSQL and pgAdmin11, a database administration tool. 

 

3.1.2. NoSQL storage 

A NoSQL storage is useful to store and retrieve unstructured data (non-tabular data). EnerMan data 

are predominately tabular but their processing at several stages requires additional information which 

is available in JSON format. More specifically, each type of dataset is related to a Data Model JSON file 

which contains all the necessary information for the processing steps. These files need to be accessible 

for reading and writing operations from both the EnerMan Intelligent nodes (edge nodes) and the 

other cloud components (e.g., the BDAE API presented later, in section 3.3). The NoSQL database 

incorporated in the BDAE is a MinIO12 object storage deployed in the cloud infrastructure. MinIO is an 

open-source, multi-cloud object storage which offers encryption, high-performance, compatibility 

with AWS S313 and is natively available in the Kubernetes14 orchestration platform. It offers graphical 

user interfaces (GUI), command-line interfaces (CLI) and application programming interfaces (API) to 

enable monitoring and observability. Another important feature of this solution is the bucket and 

object versioning. 

In the context of the EnerMan platform, the edge nodes (EnerMan Intelligent Nodes) read and write 

in the MinIO storage (via the BDAE API) in order to retrieve metadata information and update it. 

Besides the Data Model files, a second bucket in the MinIO storage is also used as a backend for the 

model registry discussed in the following subsections.  

 

3.1.3. Harmonized CSV cloud storage data and TSDB operations 

The data-harmonization module (D2.1, D2.2) which is deployed at the edge nodes (EnerMan 

Intelligent Nodes) uses the Data Model JSON files residing in the NoSQL storage of the BDAE server to 

harmonize the raw data. The harmonization workflow concludes with the harmonized CSV file transfer 

to the cloud server. This operation uses SFTP15 (SSH File Transfer Protocol), a secure file transfer 

protocol which runs over the SSH protocol and is equally secure and functional. SFTP protects against 

password sniffing and man-in-the-middle attacks. It protects the integrity of the data using encryption 

and cryptographic hash functions and authenticates both the server and the user. 

On the cloud side, a filesystem event monitoring service has been implemented with Watchdog16. The 

service monitors the assigned directory for any new file events. Watchdog uses an Observer and a 

PatternMatchingEventHandler to detect each new CSVs transferred to the cloud server. In such 

event, the service processes the CSV with the Python TSDB utils for creating a table (in case it does 

 
9 Psycopg: https://www.psycopg.org 

 

11 pgAdmin: https://www.pgadmin.org/ 
12 MinIO: https://min.io/ 
13 AWS S3: https://aws.amazon.com/s3/ 
14 Kubernetes: https://kubernetes.io  
15 SFTP: https://www.ssh.com/academy/ssh/sftp 
16 Watchdog: https://python-watchdog.readthedocs.io 

https://www.psycopg.org/
https://www.pgadmin.org/
https://min.io/
https://aws.amazon.com/s3/
https://kubernetes.io/
https://www.ssh.com/academy/ssh/sftp
https://python-watchdog.readthedocs.io/
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not already exist) and append the new data in the TSDB. The processed CSV is then transferred in 

another cloud directory where the historical CSVs are stored. The service is running in a Docker17 

container.  

3.1.4. Model registry 

A model registry is a repository that facilitates tracking, versioning and storing trained ML models. The 

data analytics offered by the BDAE are produced with multiple types of models applied on the 

different datasets for each pilot organization’s use cases. This setup makes tracking and versioning the 

trained models a critical component of the BDAE. To address these requirements, we have integrated 

the BDAE cloud infrastructure with an MLflow18 instance which is an open-source platform for 

managing the end-to-end machine learning lifecycle, using a centralized model repository, a UI and 

set of APIs. More specifically, the BDAE uses three MLflow functionalities: Tracking, Model Registry 

and Models Managing.  

MLflow Tracking 

Experiment tracking API (Figure 2) enables recording each separate training run along with the related 

tags, parameters, evaluation metrics and useful artifacts. Tracking facilitates the comparison of model 

configurations and performance results to select the best model. Additionally, we can attach any other 

artifact, e.g., configuration files, plots, pre-processing pipeline objects to each run, to retrieve them 

effortlessly later if the model is selected. 

 

 

Figure 2: Machine learning experiment tracking in MLflow UI. 

MLflow Model Registry 

The model registry (Figure 3) provides a central model store for collaborative usage. The API offers 

useful functionalities for chronological model lineage (i.e., which MLflow experiment and run 

produced the model at a given time), model serving and versioning, as well as stage transitions (for 

example, from staging to production or archived).  

 

 
17 Docker: https://www.docker.com/ 
18 MLflow: https://www.mlflow.org 

https://www.mlflow.org/
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Figure 3: Model registry in MLflow UI. 

MLflow Models Managing 

MLflow API for model managing (Figure 4) can be used for storing, annotating, discovering, and 

managing models in a central repository. Model deployment is enabled from a variety of ML libraries 

to a variety of model serving and inference platforms. In particular, MLflow provides deployment tools 

to support utilities for saving, loading, and serving in several standard flavours, e.g., scikit-learn, 

PyTorch, TensorFlow, Keras as well as a custom flavour using pyfunc for a generic model format for 

Python models19.  

 

Figure 4: MLflow flavours and serving integrations. 

 

In the BDAE context, the EnerML module (presented in 3.2) is using the MLflow experiment tracking 

API to record the training runs it executes offline. The trained models are also registered offline 

through the MLflow interface. However, the model serving is automated, and the output predictions 

can be requested through the BDAE API. Furthermore, the model registry can be also accessed via the 

BDAE API and enable users to upload their own models.  

MLflow can be supported either in a local machine or in a distributed architecture where the tracking 

server, backend store, and artifact store reside on remote hosts. For the integration with BDAE in the 

 
19 MLflow built-in model flavors: https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors 
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cloud infrastructure we used a remote MLflow Tracking Server, a Postgres database for backend entity 

storage, and an S3 bucket for artifact storage (Figure 5). The S3 bucket in our case is implemented 

with a MinIO bucket, as fully S3 compatible solution (more information on the MinIO in subsection 

3.1.1).  

 

 

Figure 5: MLflow architecture with remote Tracking Server, backend and artifact stores20. 

 

Another open-source alternative considered for the model registry functionality was Kubeflow21. Both 

technologies provide a collaborative environment for model development, are scalable, portable, and 

customizable. However, Kubeflow, is essentially a container orchestration system based on 

Kubernetes22, while MLflow is a Python library that only solves experiment tracking and model 

versioning as a single service, without the extra cost and complexity of setting up and maintaining an 

infrastructure orchestrator.   

3.2. EnerML: Data pre-processing and analytics module 

Data pre-processing and analytics in the BDAE API are powered by the EnerML Python module which 

lies in the core of the overall architecture (Figure 1). In essence, the module integrates multiple 

machine learning libraries and frameworks to provide an extended inventory of pre-processing and 

analytics methods and algorithms. The offered functionalities are the following: data pre-processing, 

model training and registration, model inference and serving, and exploratory data analysis and 

statistics. We present each of these aspects at length in the following sections.  

  

3.2.1. Data pre-processing 

EnerML data pre-processing is essentially the second pre-processing layer applied to the EnerMan 

datasets. The first layer takes place directly at the edge nodes during the collection of the raw data 

 
20 Image adapted from https://www.mlflow.org  
21 Kubeflow: https://www.kubeflow.org/ 
22 Kubernetes:  https://kubernetes.io 

 

https://www.mlflow.org/
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and is called harmonization. It is implemented as a Python module (described in D2.1, Section 3.1, 

updated in D2.2, Section 3.2). Data harmonization at the edge ensures that the raw data can be 

transferred to the cloud infrastructure in a unified and standardized form with regards to the file 

formats, column names, timestamp format, missing data indicators and so on. On the other hand, 

data pre-processing in the cloud is responsible for more sophisticated processes of data preparation 

to increase the value of the data and make them suitable for machine learning. 

The EnerML data pre-processing module provides functions for a variety of state-of-the-art methods 

to handle data cleaning, encoding, scaling, transformation, feature engineering and feature selection 

(Figure 6). Those functions are integrated from several open-source machine learning libraries built 

on top of the Python programming language, such as pandas23, scikit-learn24, Darts25, PyCaret26. 

Furthermore, Dask27 is used to enable scaling these processes in multi-core and distributed setups.  

 

 

Figure 6: The EnerML Data Pre-processing module. 

 

Data pre-processing pipelines in the cloud are guided by configuration files which are drafted for each 

type of machine learning and analytics model (Figure 7). Essentially, the configuration files are JSON 

files that handle all configurable aspects of the training pipeline besides pre-processing (see section 

3.2.2). Pre-processing in the cloud mainly takes place to improve a model’s performance and speedup 

algorithmic convergence. For example, in Figure 7, the configuration shown is defined for an 

unsupervised anomaly detection model, thus some supervised machine learning concepts for pre-

processing are missing (e.g., what is the target variable, how to split, shuffle or stratify the data, cross 

validation parameters are omitted. 

 
23 pandas: https://pandas.pydata.org/ 
24 scikit-learn: https://scikit-learn.org/stable/ 
25 Darts: https://unit8co.github.io/darts/ 
26 PyCaret: https://pycaret.gitbook.io/docs/ 
27 Dask: https://www.dask.org/ 

https://scikit-learn.org/stable/
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Figure 7: The pre-processing section of the configuration file defining the pre-processing settings. 

 

Some pre-processing operation can also take place using the timeseries database functions directly 

when we query the data. The BDAE implements some of the resampling operations using those 

functions; given a time window, a time bucket operation applies an aggregation function to each 

bucket’s row to reduce or increase the sampling rate of the data. However, Python libraries offer more 

flexibility to achieve complicated operations, and, in many cases, we use it in a complementary way, 

e.g., imputation of missing values with interpolation.  

Overall, although we have configured the pre-processing pipelines taking into account the datasets 

and model specifics, we also aimed to provide a more generic and configurable pre-processing module 

for BDAE. In fact, the pre-processing functionality is available either integrated in the model training 

functionality or as a separate process, to enable other EnerMan modelling activities to readily use the 

pre-processed data.   

 

3.2.2. Model training and registration 

The EnerML training module (Figure 8) facilitates the offline training of the models offered by BDAE 

to provide predictions, analytics, and data insights. The module is comprised of a dedicated class for 

each type of machine learning operation, e.g., clustering, anomaly detection, regression. The design 

aimed to ensure easy configuration from a centralized JSON file, as well as modularity and 

extensibility, as more algorithms might appear relevant for the use-cases as the project progresses. It 

uses a DataLoader class to get data from the TSDB and pull the respective data models from the NoSQL 

database. Several Python libraries are used for the machine learning algorithms’ implementation 

(pandas, PyCaret, Darts, scikit-learn, statsmodels and Dask). Finally, the module logs all training 

relevant information, models and artifacts to the MLflow platform.  
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Figure 8: The EnerML model training and registration module. 

The JSON configuration file defines all the necessary information for loading the data, pre-processing, 

training, evaluating, and saving a model. pre-processing in Figure 9, an example of such a file is 

presented, while Table 1 provides an overview of the generic structure of these files. In particular, it 

contains the information to run the appropriate database query to obtain the dataset, the model 

configuration (e.g., specific algorithm to be used or enabling the AutoML model selection process, 

whether to use hyperparameter tuning), as well as some parameters required to guide MLflow 

logging.   

 

Figure 9: An example of a complete configuration file for the EnerML training module. 
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Table 1: Training configuration file structure. 

Top level section Nested subsection 

Data Table name 
Columns to be used in training 
Target variable (for supervised learning only) 
Plot type (specific to the model) 

Pre-processing Settings for data cleaning, encoding, scaling, 
transformation, feature engineering and 
selection (specific to the model) 

Model  Algorithm id 
Naming convention 
Tuning  
Training mode (if True all algorithms are tested) 

MLflow configuration Enabled (when True, results are logged) 
Experiment name to log results 
Tags 

 

Figure 10 presents the BaseModel and one of the specific machine learning classes that inherits from 

it, the Anomaly Detection model.  The BaseModel expects the JSON configuration file to enable the 

model initialization. Furthermore, it declares some abstract methods which are required to be 

implemented in the child model class. An Mlflow connection is created immediately after the 

initialization and logging all the important entities is enforced with an abstract method in the 

BaseClass (_write_logs), the implementation of which handles all the logging activity to Mlflow. 

Model saving is implemented with another method (save_model) which ensures that the model will 

be saved along with its signature, i.e., the schema of the features used during training, as well as the 

pre-processing pipeline. These two artifacts are necessary to ensure that at inference time, data pre-

processing will be executed with the same process, and the same data schema will be fed to the 

trained model.  
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Figure 10: Skeletons of the BaseModel and the Anomaly Detection class that inherits from it. 

 

Furthermore, the module uses a DataLoader class that handles all data loading processes. It is 

currently using a generic SQL query and a psycopg2 connection to bring the data from the TSDB, which 

indicates that any dataset used for training should already reside in the TSDB as a single table. This is 

a fact for all the original datasets provided by the pilots, however derivative tables obtained by merged 

tables will have to be created manually and proactively, using independent Python scripts or via 

pgAdmin and psql. The DataLoader also connects with the JSON DataModel NoSQL DB, to pull the data 

models and extract relevant information for processing the data, e.g., the original data time zone, 

since everything is stored in UTC in the TSDB. The DataLoader class is also used by the inference 

module described in the following section.  

Overall, the current implementation can support the machine learning models presented in Table 2.  

 

Table 2Machine learning models and algorithms that can be supported by the BDAE. 

Machine learning operation Algorithms 

Regression Linear Regression 
Lasso Regression 
Ridge Regression 
Elastic Net 
Lasso Least Angle Regression 
Bayesian Ridge 
Support Vector Regression 
K Neighbors Regressor 
Decision Tree Regressor 
Random Forest Regressor 
Extra Trees Regressor 
AdaBoost Regressor 
Gradient Boosting Regressor 
MLP Regressor 
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Extreme Gradient Boosting 
Light Gradient Boosting Machine 
CatBoost Regressor 

Classification Logistic Regression 
K Neighbors Classifier 
Naive Bayes 
Decision Tree Classifier 
SVM - Linear Kernel 
SVM - Radial Kernel 
Gaussian Process Classifier 
MLP Classifier 
Ridge Classifier 
Random Forest Classifier 
Quadratic Discriminant Analysis 
Ada Boost Classifier 
Gradient Boosting Classifier 
Linear Discriminant Analysis 
Extra Trees Classifier 
Extreme Gradient Boosting 
Light Gradient Boosting Machine 
CatBoost Classifier 

Clustering K-Means Clustering 
Affinity Propagation 
Mean shift Clustering 
Spectral Clustering 
Agglomerative Clustering 
Density-Based Spatial Clustering 
OPTICS Clustering 
Birch Clustering 
K-Modes Clustering 

Anomaly Detection Angle-base Outlier Detection 
Clustering-Based Local Outlier 
Connectivity-Based Outlier Factor 
Histogram-based Outlier Detection 
Isolation Forest 
k-Nearest Neighbours Detector 
Local Outlier Factor 
One-class SVM detector 
Principal Component Analysis 
Minimum Covariance Determinant 
Subspace Outlier Detection 
Stochastic Outlier Selection 

Forecasting 
 
 

Baseline Models 
Block Recurrent Neural Networks 
Croston method 
Exponential Smoothing 
Fast Fourier Transform 
LightGBM Model 
Kalman Filter Forecaster 
Linear Regression model 
N-BEATS 
N-HiTS 
Facebook Prophet 
Random Forest 
Regression ensemble model 
Regression Model 
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Recurrent Neural Networks 
StatsForecastAutoARIMA 
BATS and TBATS 
Temporal Convolutional Network 
Temporal Fusion Transformer (TFT) 
Theta Method 
Transformer Model 
VARIMA 
 

 

3.2.3. Model inference and serving 

The EnerML inference module (Figure 11) contains the Inferrer class with methods to accommodate 

the model serving utilities. It uses the same DataLoader class with the training module, and its main 

functionality is to fetch a trained model from the Model Registry to produce predictions which are 

forwarded to the BDAE API. The whole process is triggered with a GET request sent by the BDAE API, 

defining the table with the data to be used for prediction and the ML operation/algorithm as a query 

parameter. Then, the inference workflow begins with loading the data from the TSDB using the JSON 

data model for localization instructions. Subsequently, the Inferrer fetches the appropriate model 

from the MLflow Model Registry and provides the model signature (schema of the training data) to 

the pre-processing method which is responsible to match the signature with the prediction data and 

apply the related pre-processing pipeline. The next step is to call the prediction method passing the 

preprocessed data and return the predictions to the BDAE API. Additional optional functionalities 

include methods to fetch and return other artifacts from MLflow, e.g., plots created at training time, 

a feature importance estimation (currently for regression models), append the predictions with 

explainable datetime features, e.g., day_of_week. Finally, the Inferrer can provide the pre-processing 

service independently, which can be useful if a user only wants the preprocessed dataset to use it with 

their own models.  

 

 

Figure 11: The EnerML model inference and serving. 



 

33 
 

Deliverable 3.1: Big Data Collection and Analytics platform and analytics report 

Analytics report 

3.2.4. Exploratory data analysis and statistics  

Besides the machine learning predictions, other data analytics are offered by BDAE. Exploratory data 

analysis (EDA) is provided as an overview data profile to inform the user on a dataset’s characteristics. 

This is particularly helpful to find suitable machine learning strategies regarding pre-processing and 

training. The timeseries statistical analysis is another form of EDA but more focused on discovering 

patterns and characteristics related to the temporal nature of the data. 

 

Exploratory data analysis 

Exploratory data analysis (EDA) is provided with pandas-profiling28, an open-source Python module 

for generating interactive HTML reports in web format. The reports are generated automatically from 

pandas dataframes in a standardised format. Each data profile report includes several sections: 

Overview, Variables, Interactions, Correlations, Missing values, and Samples. 

The Overview presents global details about the dataset, such as variable types, i.e., whether they are 

numerical or categorical, number of observations, missing cells count, duplicates count, memory 

footprint. Furthermore, for each variable, the values’ data types, minimum/maximum values, distinct 

and missing counts, as well as size in memory are provided along with a histogram of the variable’s 

distribution (Figure 12 Figure 1). The user can use a “Toggle details” button to view quantile statistics 

(minimum value, Q1, median, Q3, maximum, range, interquartile range), descriptive statistics (mean, 

mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, 

skewness), common and extreme values. Furthermore, and Alerts interface is provided to overview 

potential data quality issues (high correlation, skewness, uniformity, zeros, missing values, constant 

values, between others).  

 

 
28 pandas-profiling: https://pandas-profiling.ydata.ai/docs/master/ 

https://pandas-profiling.ydata.ai/docs/master/
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Figure 12: EDA overview. The data used in this example are drawn from the EnerMan YIOTIS pilot. 

 

The Interactions and Correlations sections (Figure 13) present relationships between two variables as 

a scatterplot and using the correlation coefficients, respectively. To estimate the correlation 

coefficients there several choices, such as Spearman, Pearson, Kendall, Phik coefficients, and for each 

choice a description is available. 
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Figure 13: EDA interactions and correlations profiling. The data used in this example are drawn from the EnerMan YIOTIS 
pilot. 

 

Finally, a Missing values section offers a visualization of NULL values per column, and in the Sample 

section, the user can see the first and the last rows of the dataframe (Figure 14).  
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Figure 14: EDA missing values and sample section. The data used in this example are drawn from the EnerMan YIOTIS pilot. 

Timeseries statistical analyses 

The BDAE provides additional analytics focused on timeseries statistics. This functionality is powered 

by Darts29 with statsmodels30 as a backend. Darts is a Python module that supports both univariate 

and multivariate time series and models. In the EDA, we use the darts.utils.statistics module 

to obtain insights in a timeseries’ seasonality, trend and other statistic patterns (Figure 15).   

 
29 Darts: https://unit8co.github.io/darts/ 
30 Statsmodels: https://www.statsmodels.org/stable/index.html 

https://unit8co.github.io/darts/
https://www.statsmodels.org/stable/index.html
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Figure 15: Timeseries statistics. The data used in this example are drawn from the EnerMan YIOTIS pilot. 

 

3.3. Big Data Analytics Engine API 

The EnerMan BDAE API serves as the starting point to access the historical data per use-case and 

process, request predictions and analytics on selected data, download preprocessed data to use for 

downstream tasks, and read or update the data models. Each pilot has its own application protected 

with security protocol. Each application is connected to TimescaleDB to read historical data and other 

derivative data tables, MLflow to fetch the appropriate models and use them for predictions, and 

MinIO to retrieve the data models. In the following sections, we will present the tools we used for 

building the API, the interfaces it provides and the operations they cover. 

  

3.3.1. FastAPI, tools and standards 

 The BDAE API is implemented with FastAPI31, a high-performance web framework to develop RESTful 

APIs in Python. Furthermore, it is designed around and fully compatible with the open standards, i.e., 

OpenAPI32 and JSON Schema33, and provides by default Swagger UI34 and Redoc35 code generated 

documentation interfaces. The framework depends on Pydantic36 as well as the standard Python type 

hints to validate, serialize and deserialize data. Furthermore, FastAPI fully supports asynchronous 

programming using the Uvicorn37 server and the Starlette38  framework/toolkit for Asynchronous 

Server Gateway Interface (ASGI)39. A quick overview of these tools and their functionalities follows: 

 
31 FastAPI: https://fastapi.tiangolo.com/ 
32 OpenAPI: https://www.openapis.org/ 
33 JSON Schema: https://json-schema.org/ 
34 Swagger UI: https://swagger.io 
35 Redoc: https://redocly.com/ 
36 Pydantic: https://pydantic-docs.helpmanual.io/ 
37 Uvicorn: https://www.uvicorn.org/ 
38 Starlette: https://www.starlette.io/ 
39 ASGI: https://asgi.readthedocs.io 

https://fastapi.tiangolo.com/
https://www.openapis.org/
https://json-schema.org/
https://swagger.io/
https://redocly.com/
https://pydantic-docs.helpmanual.io/
https://www.uvicorn.org/
https://www.starlette.io/
https://asgi.readthedocs.io/
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OpenAPI 

The OpenAPI Specification defines a standard, programming language-agnostic interface description 

for HTTP APIs. An OpenAPI document describes API services, either be in YAML or JSON format. The 

document can be produced statically, or it can be generated dynamically from an application, which 

makes it both human- and machine-readable. The OpenAPI documents enable code generated 

interactive documentation.  The current implementation of BDAE API uses OpenAPI version 3.0.2.  

JSON Schema 

This is an IETF40 standard that provides a format to describe the structure and the validation 

constraints of a JSON document. Its application enforces consistency and data validity across similar 

JSON data. More specifically, JSON Schema uses a vocabulary to describe existing data formats, with 

a clear human- and machine- readable documentation and validates data to enable automated testing 

and ensure the quality of the submitted data. The OpenAPI specification has incorporated JSON 

Schema.  

Redoc 

Redoc is an open-source tool for generating API documentation using an OpenAPI Specification. The 

generated documentation is clean and customizable with a three-panel, responsive layout: the left 

panel contains a search bar and navigation menu, the central panel contains the documentation, and 

the right panel contains request and response examples. Some of the benefits of this solution, besides 

being open source, is the attractive design, customizability, and compatibility. FastAPI provides as the 

default documentation solution.  

Swagger UI 

Swager UI enables client side to visualize and interact with an API’s resources without any 

implementation logic, since the interface is automatically generated by the OpenAPI Specification. The 

interface is user friendly and easy to understand, and it enables developers of API downstream tasks 

to quickly try endpoints execution and monitor their API requests and the responses they receive. 

Swagger UI is enabled by default in FastAPI.  

Pydantic 

Pydantic is a library that uses Python type annotations to facilitate data validation. It enforces type 

hints at runtime and provides user friendly errors in case of invalid data. Using the typing module, 

Pydantic schemas can also be used recursively, allowing to define very complex hierarchical objects. 

Furthermore, Pydantic can be used for settings managements. Fast API is fully compatible with 

Pydantic.  

Uvicorn 

Uvicorn is an ASGI web server implementation for Python. It provides a minimal low-level 

server/application interface for async frameworks, which supports HTTP/1.1 and WebSockets.  

Starlette 

Starlette is a lightweight ASGI framework/toolkit, which uses the Uvicorn server. It can run completely 

asynchronously and is one of the fastest Python frameworks available. It allows multiple incoming 

events and outgoing events for each application, as well background coroutines. This is ideal for 

machine learning application, where time-consuming training events should not block other API 

requests. FastAPI is a sub-class of Starlette. 

 
40 IETF: https://www.ietf.org/ 

https://www.ietf.org/
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Other web frameworks that have been examined as alternatives for the EnerMan BDAE API, are 

Django REST framework41 and Flask42. FastAPI, is speed-oriented by design which makes it the top 

performer among the three, and this was our basic criterion. Additional advantages included the built-

in documentation and OpenAPI and JSON Schema compliance, as well as the ease-of-use code-wise 

(code autocompletion everywhere) and datatype validation out-of-the-box.  

 

3.3.2. BDAE API interfaces 

In this section we will present several interfaces of the BDAE API to offer some insights on its 

functionalities to the user, whether this is another EnerMan component, e.g., the Visualization 

Framework, or a human user. Initially, we will look at the /docs interface powered by Swagger UI. 

For each pilot API, the Swagger UI provides endpoints in six different categories, but more categories 

and endpoints can be easily added in the future, since modularity and extensibility are central to the 

API design.  

The main view of the interface (Figure 16) is split into the six main sections of endpoints: Data, 

Exploratory Data Analysis, Data Models, Pre-processing, Training, and Predictions.  

 
41 Django REST framework: https://www.django-rest-framework.org/ 
42 https://flask.palletsprojects.com/en/2.1.x/ 
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Figure 16: User interface for the YIOTIS pilot BDAE API. Six main categories of endpoints are provided. 

  

Endpoints in the Data section are related to TSDB operations, such as count datapoints in a table or 

return the table itself. The data/<pilot_org> endpoint (Figure 17) in specific, accepts several query 

parameters to control the response. The data format can either be JSON or CSV, and a dropdown 

menu shows the tables which are available to select. Data can be selected in specific time range and 

resampling can be applied given a bucket width size. Finally, each table can be selected using an offset 

and a limit.  
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Figure 17: User interface for the CRF pilot BDAE API. Endpoint to request a data set from the TSDB. 

 

The Swagger UI provides the description of the response as it was defined with the respective Pydantic 

schema, to enable data validation (Figure 18), as well as an example value (Figure 19).   

 

Figure 18: User interface for the CRF pilot BDAE API. The schema of the response defined with Pydantic models. 
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Figure 19: User interface for the CRF pilot BDAE API. Example value for a response based on predefined Pydantic models. 

 

When an endpoint is executed, a Curl command and a Request URL with the query parameters are 

presented in the Responses section of the Swagger UI. The response in Figure 20 was queried with 

format=json, table_name=yiotis_cooling_outdoor, skip=0, start_date=2015-01-01%2000:00:00Z, 

end_date=2022-12-31%2023:59:59Z, bucket_width=1 and limit=100. 

 

 

Figure 20: User interface for the YIOTIS pilot BDAE API. Swagger UI response includes a Curl request, the Request URL and 
the response body. 
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In the Exploratory Data Analysis (EDA) section, the endpoint available triggers the pandas-profiling 

process described in section Exploratory data analysis and  3.2.4. Additional EDA tools can be added 

here such as Dtale43 or Sweetviz44. The query parameters for this EDA endpoint (Figure 21) are the 

table name of interest and the limit of the rows selected. Data profiling tools are relatively time 

consuming and is better to be requested directly with the Request URL, instead of executed through 

the Swagger UI. Another endpoint in the EDA section provides data insights based on several time 

series statistical analyses using Darts (Figure 22). 

 

 

Figure 21: User interface for the YIOTIS pilot BDAE API. Pandas-profiling EDA endpoint. 

 

 

Figure 22: User interface for the YIOTIS pilot BDAE API. Timeseries statistical analyses offered in the EDA section. 

 

 
43 Dtale: https://github.com/man-group/dtale 
44 Sweetviz: https://github.com/fbdesignpro/sweetviz 
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In the Data Models section, there are both GET and POST endpoints to retrieve and update the Data 

Models JSON files used by the edge nodes to harmonize the data. An edge node can use the GET 

method to retrieve a pilot’s Data Model file and use the metadata information to run the suitable 

harmonization operations. Subsequently, if any changes have been introduced in the data schema, 

the edge node harmonizer will update the Data Model file accordingly and use the POST method to 

apply the update in the NoSQL database (MinIO, see also section 3.1.1).  

 

 

 

Figure 23: User interface for the CRF pilot BDAE API. A GET endpoint to retrieve a pilot's Data Model JSON file from the 
NoSQL storage. 

 

The Pre-processing section provides endpoints to request a table’s data after they have been prepared 

and they are ready to use as input to a machine learning training model, such anomaly detection or 

regression. The same pre-processing pipelines is used for training via the BDAE API, however, 

providing just the pre-processed data can be useful if end-users want to train their own architectures. 

In the Training section (Figure 24), there are dedicated endpoints for each machine learning class, e.g., 

anomaly detection, regression. Each endpoint takes the table name of interest and the algorithm 

name as query parameters. Furthermore, for supervised learning, such as regression, the target 

variable name is also required. 
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Figure 24: User interface for the YIOTIS pilot BDAE API. Model training endpoint. 

 

In the Inference section, an endpoint per machine learning task is provided for prediction requests. 

Query parameters are given as input to define the specific algorithm that is available, and the data 

schema (model signature) that was used to train the data (Figure 25). The results are returned either 

in JSON or CSV format, and they contain the values of the initial features plus the prediction result 

(Figure 26), i.e., a 0 or 1 label and an anomaly score for anomaly detection tasks, the value of the 

target variable in supervised tasks such as regression, or a cluster id for clustering tasks.    

 

 

Figure 25: User interface for the YIOTIS pilot BDAE API. An endpoint in the Predictions section for the anomaly detection 
machine learning task. 
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Figure 26: User interface for the YIOTIS pilot BDAE API. A response with predictions for the anomaly detection task on batch 
data. 

In addition to the predictions, the section also provides an endpoint for a feature importance 

estimation (Figure 27). This analysis is based on the computation of the regression coefficients, and it 

provides an idea on how influential each independent variable is. For example, Figure 27, shows the 

results for a YIOTIS pilot use case, where the production area temperature is the most significant 

feature to impact power consumption.  
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Figure 27: User interface for the YIOTIS pilot BDAE API. Feature importance estimation to detect influential variables. 

 

 Finally, the API provides automatically generated documentation powered by Redoc (Figure 28). The 

documentation page has three panels: the left panel contains a search bar and a navigation menu to 

the different sections of endpoints, the central panel contains the query parameters and types, and 

the right panel contains request and response examples. 

 

 

Figure 28: User interface for the YIOTIS pilot BDAE API. Code-generated API documentation. 
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3.4. Security  

The BDAE API is protected with HTTP Basic Auth, a general framework for access control and 

authentication defined in RFC 723545. With this method, the cloud server responds to a client request 

with an HTTP 401 "Unauthorized" error and asks for a username and a password with a WWW-

Authenticate response header.   The client then presents the integrated prompt for a username and 

password to the user and issues a request that includes the correct Authorization header. 

Furthermore, each of the databases deployed in the BDAE architecture has each own user 

authentication and access control, content encryption scheme, and client connections are restricted 

to specific IPs. Loading to TimescaleDB is restricted to internal service after checking the file format 

and content adheres to certain rules. Loading a model directly to MLflow is available to any user with 

password, but again, the file needs to fulfil certain format and content requirements. Finally, API Post 

requests to MinIO that intend to change the JSON content are protected since there is no dynamic 

code evaluation taking place and the JSON schema is well defined with Pydantic models.  

 

3.5. Deployment  

The current deployment of the BDAE is fully containerized integrated with Docker images of 

TimeScaleDB, MLflow, MinIO. Docker compose is used to run it as a multi-container application.  

 

3.6. Communication with other EnerMan components 

BDAE communicates with several other components of the EnerMan system to facilitate data storage, 

processing and retrieval needs, as well as to provide predictions and analytics. Following, we highlight 

these connections and their characteristics.  

3.6.1. EnerMan Intelligent Node 

The EnerMan Intelligent nodes deployed in the edge units incorporate a harmonization module that 

communicates with the BDAE and executes a workflow that applies the first layer of pre-processing to 

the raw data. The edge nodes use a GET request to read the data models JSON files from the BDAE 

API (see also section 3.1.2) and a POST request to modify their content whenever the data schema 

changes at the client side. The edge node uses SFTP to transfer the harmonized CSVs to the BDAE 

server.  

More details on the harmonization module are provided in D2.1 (Preliminary version of EnerMan Data 

Collection and Management Components, M12) and D2.2 (Final Version of EnerMan Data Collection 

and Management Components, M18).  

 

3.6.2. Industrial Management Visualization System 

BDAE serves data, predictions and analytics to the visualization system, which accesses these outputs 

using GET requests to the BDAE API. The output is provided in JSON responses, which is the 

 
45 RFC 7235 - Hypertext Transfer Protocol (HTTP/1.1): Authentication: 
https://datatracker.ietf.org/doc/html/rfc7235  

https://datatracker.ietf.org/doc/html/rfc7235
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appropriate format to be consumed by the visualization system interface.  Endpoints in the BDAE API 

are continuously developed to accommodate the visualization system needs.  

More details on the Industrial Management Visualisation System module are provided in D3.2 

(EnerMan Visualization and Management Framework Design, M18). 

 

3.6.3. Prediction Engine and Simulation Engine 

The Prediction Engine as well as the Simulation Engine can communicate with the BDAE API using its 

endpoints to request pilots’ data, either in their harmonized format or fully preprocessed and ready 

for downstream modelling task. Furthermore, since these two components produce their own data, 

they can use the SFTP transfer service along with the endpoint returning the Data Models to create 

new tables and load data in TSDB, similarly to the process followed with the pilot’s data by the edge 

nodes system (described in 3.6.1). Finally, the BDAE API design seeks to accommodate potential 

requirements to host models trained offline and enable their serving through its endpoints.  

More details on the prediction engine are provided in D4.3 (Computational prediction engine report, 

M24) and for the simulation engine in D4.2 (Simulation approach/mechanism for providing energy 

related indicators, M18).  

 

3.6.4. Sphynx Machine Learning and Analytics Platform 

Sphynx Machine Learning and Analytics (SphynxMLA) is a system developed for the STS platform, used 

to create custom ML workflows. SphynxMLA supports training and deployment of ML models for 

predictions and predictive performance evaluation. It is based on Alteryx' EvalML46 AutoML library to 

perform the AutoML pipeline generation and currently supports supervised machine learning tasks. 

The SphynxMLA supports a variety of ML predictive models that are able to be included in the pipeline 

optimization and select the one with the best performance. Additionally, SphynxMLA supports 

ensembling, i.e., whether to use a combination of the best models to make predictions, instead of just 

the best one performance-wise. 

SphynxMLA supports both single-sample and batch predictions on new unseen data, outputting 

multiple performance metrics:  

• For classification: f1 micro, balanced accuracy, precision micro, recall micro  

• For regression: negative mean squared error, R2, negative mean absolute percentage error, 

explained variance. 

Through its GUI, the user can define specific hyperparameters of EvalML such as the model categories 

to include, the time and unit budget as well as the enabling of ensembling. 

In the BDAE context, SphynxMLA can be used as an independent platform for supervised model 

training, and then use the BDAE API to load and register the serialized models with a POST Request. 

From that stage, the model serving can be conducted similarly to the natively trained models (section 

3.2.3 Model inference and serving). 

 

 
46 EvalML: https://evalml.alteryx.com/en/stable/ 
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3.7. Current state of the implementation and future steps 

Currently, the first release of the BDAE implementation contains three main APIs related to three 

pilots, one for each pilot category:  

• Energy Sustainable Efficient Food and Beverages Pilot: YIOTIS API 

• Energy Sustainable Efficient Metal Processing Pilot: 3DNT API 

• Energy Sustainable Automotive manufacturing, industrial equipment manufacturing Pilot: CRF 

API 

As the integration progresses, more APIs can be replicated from the ones already developed. 

Regarding the specific functionalities, all the datasets from the three pilots have been harmonized, 

uploaded to the TSDB and are available to be requested in JSON or CSV format from the API as 

described in section 3.3.2 BDAE API interfaces, Figure 17).  

Regarding the prediction services, several models have been trained and registered, and their 

predictions or artifacts can be requested from the pilots’ APIs. Models are available for the following 

demonstrators: 

• Anomaly detection for YIOTIS cooling stage of chocolate production (five algorithms: 

Connectivity-Based Outlier Factor, Isolation Forest, k-Nearest Neighbours Detector, Local 

Outlier Factor, One-class SVM detector) 

• Regression models for YIOTIS buffer stage of chocolate production (two algorithms: Random 

Forest, Extra Trees)  

• Clustering models for 3DN additive manufacturing (two algorithms: K-Means, Mean shift) 

Although, the EnerML module in conjunction with the Sphynx MLA platform can support a plethora of 

models and analytics, and the base classes and operations are already in place, training meaningful 

models involves a good understanding of the pilots’ requirements, which is an ongoing process. Thus, 

more models are expected to be added as the integration process progresses with and domain expert 

knowledge is injected in the implementation.  

Regarding integration with the rest of the EnerMan components, the current release supports 

integrations with the EnerMan Intelligent Node (see section 3.6.1) and the Industrial Management 

Visualization System (section 3.6.2). Integration with the Sphynx Machine Learning and Analytics 

Platform is also supported by loading models trained with it to the BDAE model registry via the API. 

Next steps will focus on integrating with Prediction Engine and Simulation Engine (section 3.6.3) in a 
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similar approach that was followed for the Intelligent Node, since prediction engine needs to both 

read and write data to BDAE (Figure 29). 

  

Figure 29: Integration with the EnerMan System Analysis and Prediction. 

 

Finally, regarding model training, as we have discussed in section 3.2.2 (Model training and 

registration), currently, it is executed offline, using the configuration files and uploading the serialized 

model. A future plan is to be able to offer endpoints to request different training scenarios. 
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4. CONCLUSION 

Big Data Analytics Engine (BDAE) is a critical component of the EnerMan system since it is expected to 

communicate with most of the other EnerMan components to facilitate data operations such as 

extract, read, write, preprocess, store, retrieve and analyse. In the context of Big Data applications, all 

these operations can be quite challenging, especially when the aim is towards building a generic 

application to accommodate multiple pilots, organizations, use cases and processes. Considering 

these underlying complexities, it became imperative to follow a robust design of the BDAE 

architecture. Our goal was to design a system that is modular, scalable, extensible, portable, and most 

importantly secure. 

Implementation-wise, we incorporated strictly open-source software solutions of high-performance, 

security and flexibility, aiming to an innovative and cost-efficient solution. Python was the main 

programming language of the implementation since it offers access to an extremely rich ecosystem of 

libraries and solutions for data management and analytics. Regarding the storage infrastructure, a 

critical aspect of the BDAE architecture, we aimed at high-performance, scalable, and distributed 

solutions. Similarly, the API implementation adopted cutting-edge solutions of high-performance and 

extensibility, based on and fully compatible with open standards.  

The EnerML module of the BDAE was envisioned as a decoupled solution that provides all the 

necessary pre-processing and analytics functionalities by integrating state-of-the-art ML frameworks. 

The module design has been influenced by the qualities of modularity and extensibility, since the 

analytics domain is vast and as the project progresses, it should be straightforward and effortless to 

incorporate more algorithms and analyses.  

At a conceptual level, the BDAE provides methods for detecting anomalies, predictions, feature 

importance analysis to identify influential variables, cluster analysis, and other analytics to understand 

the variables of interest and their interactions. In the future, the main action points will be to continue 

integrating the BDAE with the other EnerMan components and improve the analytics by incorporating 

more feedback and requirements by the end users.   

Overall, the BDAE architecture aims to provide a complete solution to manage the EnerMan data flows 

and support all the stages of the machine learning lifecycle, from data pre-processing to model training 

and serving, to assist pilots to extract value from their data.  
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