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EXECUTIVE SUMMARY    

This deliverable is focused on the preliminary activities of WP2 and especially in the activities of Task 

2.1 (T2.1) and Task 2.4 (T2.4). Initially we provide an introduction of the overall approach in the WP2 

and then in section 2 we present the analysis on Execution Environment of the EnerMan edge/end 

node along with the node’s architecture that supports such an environment. Afterwards, in section 3 

the preliminary applications that have been developed in WP2 as those have been prescribed in Task 

2.2 are being briefly presented however, we do not provide thorough analysis on them since there is 

a dedicated deliverable on T2.2 on M18. Similarly, we do not deliberate on the activities of T2.3 since 

there is a dedicated deliverable report on M18 for that task. In section 4 we focus our analysis explicitly 

on the security aspects that are linked with the EnerMan edge layer based on the activities of Task 

2.4. Finally, in Section 5 we demonstrate the usage of the EnerMan execution environment for various 

scenarios and showcase how some applications described in Section 3 and Section 4 are implemented 

in action. The deliverable is concluded with an appendix that presented the custom design flow that 

was used in order to create the EnerMan execution environment on the edge/end node that is 

implemented on a Xilinx MPSoC device. 
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1. INTRODUCTION 

 

The second work package of the EnerMan project is focused on the data collection and data processing 

at the end devices and edge level of the EnerMan framework. This means that in this WP we are going 

to research, design and implement all the relevant components of the EnerMan data collection and 

Control plane on the edge of the industrial manufacturing infrastructure. Also, we are going to create 

the necessary computing and execution environment that will allow the appropriate deployment, 

execution, and efficient operation of such components. Our goal in this WP is to create an EnerMan 

intelligent Cyber-Physical System (CPS) end node that will act as an end device or/and as a data 

aggregator for a series of in-field devices (machines) within the industrial environment. Apart from 

simple data collection, the EnerMan node should be able to perform intelligent operations that can 

support specialized industrial functionalities (e.g., Predictive maintenance or intelligent temperature 

measurement or energy consumption local data predictions) to pre-process and fine-tune data that 

are going to be forwarded to the EnerMan system layer (as a private or a public cloud big data analytics 

engine etc.). We adopt, as an execution environment, embedded system solutions that have Multiple 

Processor System on Chips with dedicated FPGA fabric that can offer custom to our needs hardware 

acceleration and hardware level (programmable logic) reconfiguration, to support flexibility in the 

execution of the various end/edge node operations and also to offer a high level of efficiency. Apart 

from the above, in WP2 we also considered the need for an edge device-based control loop 

mechanism that will collect the needed configuration from the EnerMan system layer (e.g., from the 

intelligent Decision Support System, iDSS) and forward it to the factory automation processes (e.g., 

PLCs or other control (actuation) devices). Given that reconfiguration is also supported by the 

EnerMan edge node (software and hardware based) the control loop should also be able to offer 

control of the EnerMan edge node functionality and how such functionality can be reconfigured over 

time (during operation) according to the EnerMan platform suggestions. 

Following the Description of Action (DoA) in the General Assembly of the EnerMan project, the WP2 

is meant to provide the necessary execution environment for performing data collection and 

processing at the edge of the industrial infrastructure so that we can deploy in such an environment 

the EnerMan software agents aiming to do holistic data processing using diverse sensing modalities 

for specific industrial functions as those are specified by the EnerMan user requirements. Of course, 

goal of WP2 is also to create such software agents (envisioned as small software programs executed 

in the EnerMan execution environment). Apart from those actions in WP2 we are designing and 

implementing the edge IIoT level support mechanism for the EnerMan flexible control loop and 

protect the overall data collection mechanism against security and privacy breaches using dedicated 

security operations aiming to act as proactive (to prevent security breaches) and reactive (to detect 

security attacks) measures. 

As can be seen in Figure 1 the WP2 designed and developed edge node is going to act as an EnerMan 

intelligent CPS node that will collect sensor data and as a data aggregator that will harmonize and 

preprocess such data to be ready for the big data analysis performed at the cloud level of the EnerMan 

architecture. During the initial user requirements and architecture requirements phase of the 

EnerMan project (performed in WP1) it became apparent that the two roles can be merged into a 

unified CPS component (the EnerMan intelligent node) that can include both roles originally described 

in the DoA document (i.e., data collection/aggregation, data harmonization and preprocessing). 
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Figure 1. Initial EnerMan Data Aggregator architecture 

The data that we currently consider at the edge level (either raw data or data after preprocessing) can 

be the following 

▪ Machine energy consumption 

▪ Multiple sensory data (temperature, pressure, humidity, etc.) from existing pilot deployed 

sensors 

▪ Machine functionality status for predictive maintenance (machine faulty state) 

The above activities of WP2 span in 4 tasks (Task 2.1 to Task2.4). Task 2.1 is focused on setting up the 

appropriate execution environment and the research and development of how to efficiently deploy 

the Edge node intelligence and security functionality into the execution environment. Task 2.2 is 

focused on the design and development of the appropriate intelligence algorithms (Machine Learning 

based) to be deployed in the EnerMan intelligent edge node. Task 2.3 is about the realization of the 

EnerMan control loop and the reconfigurability that is supported by the EnerMan architecture. Task 

2.4 is about the establishment of all the data security functionality that will prevent security breaches 

of the collected, processed, and transmitted data from the edge node to the EnerMan cloud solutions. 

Given that according to the EnerMan workplan there are dedicated deliverables for Task 2.2 and Task 

2.3, in the deliverable (D2.1) we report the preliminary activities of Task 2.1 and Task 2.4. We also 

provide a brief description of the Task 2.2 activities (that are currently in progress) since those are 

linked with the Task 2.1 activities and the structures that are implemented there. 

Thus, in this deliverable, we focus on the activities that are in progress till Month 14 of the project 

(note that WP2 and the relevant tasks are concluded in M18). These activities are:  

• The research, design, and development of the appropriate execution environment in the 

EnerMan CPS intelligent edge node 

• The capabilities that this execution environment can provide at the current state of the project 

• The algorithms that are currently designed and under deployment in the created execution 

environment 

• The security functionality that such an environment can currently support 

Finally, in the deliverable, we provide in a tutorial-like fashion the workflow to be followed to deploy 

an application on the developed execution environment including hardware 

acceleration/reconfiguration support. 

Legacy end 

node 

sensor-

merge 
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2. ENERMAN END NODES/EDGE ARCHITECTURE AND EXECUTION 

ENVIRONMENT  

2.1. Overall Execution environment Concept 

One of the fundamental activities of WP2 (reflected in T2.1) is to design the appropriate execution 

environment for the EnerMan end nodes and data aggregators that will enable the easy deployment 

and usage of the EnerMan edge intelligence as well as the control loop reconfiguration (designed in 

T2.2 and T2.3). Given that we are aiming to provide highly efficient data processing at the edge as well 

as the maximum possible reconfiguration, it is imperative that we structure the execution 

environment to include mechanisms that will be able to offer such services.   

In general, the execution environment of the EnerMan end/edge node should include several 

components that will allow the hardware and software support of the EnerMan edge functionality. 

Given that the EnerMan project aims at providing reconfiguration of the EnerMan edge functionality, 

the EnerMan execution environment should also be able to support such service at the hardware level 

(using FPGA programmable logic) and at the software level. Thus, before actually deploying specific 

algorithms (as those are specified in T2.2) we need to provide an execution environment that can 

allow the easy deployment, configuration and reconfiguration of such algorithms in hardware and in 

software.  The EnerMan software agents, which constitute, the operations to be executed in the 

EnerMan end/edge nodes will rely exclusively on the capabilities of such execution environment.  

2.2. Edge/End Node Architecture Enabling the Execution Environment 

We envision the EnerMan intelligent Edge node as a heterogenous embedded system device that can 

perform multiple activities within the manufacturing infrastructure in an efficient manner. This edge 

device should be able to collect the data that are provided to it by the various sensors existing inside 

the industrial domain, harmonize those data in order to be compatible with the data expectations 

required by the EnerMan big data analytics engine and in parallel also process those data so as to offer 

the EnerMan platform as well as the operator appropriate information that will help them make 

informed decisions on the optimal energy sustainability options. This indicate that the Data collection 

and Processing should be manifested in the EnerMan intelligent edge node with various ways and in 

an efficient manner. Furthermore, the node should be versatile enough to offer a broad range of 

services that may vary from time to time and from industry to industry. This highlights, apart from 

high efficiency, the need for flexibility in the offered operations of the node. To keep efficiency at high 

level regardless of the configuration of the EnerMan edge node we opt for support of reconfigurability 

both in hardware and software. This gives the ability to change, at a reasonable degree, the 

functionality of the EnerMan intelligent edge node with respect to the underlined industry needs 

without having to redesign/remanufacture the node itself. In practice, this means that the execution 

environment of the EnerMan intelligent edge node should be able to handle such reconfigurability 

and efficiency features. From a hardware perspective, we consider as a best match to the above 

requirements, the use of MultiProcessor System on Chip (MPSoC) embedded system devices that can 

host in its core, multiple processors (usually multicore processors) to achieve efficiency but also 

specialized hardware components for specific applications (e.g., Graphic Processing Units (GPU) or 

real time processors). To further support hardware reconfigurability, we consider embedded system 

MPSoCs that fathom in their SoC architecture, reconfigurable hardware programmable logic in the 

form of an FPGA fabric. The latest FPGA manufacturer solutions are more than capable of supporting 

the above-described setup. In EnerMan we opt for Xilinx manufacturer devices focusing on the Xilinx 

Zynq Ultrascale+ MPSoC design as this is realized in two low-end, low-cost embedded system boards 

i.e., the Xilinx ZCU 104 or 102 development board and the Avnet ULTRA96 development board. The 
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advantage of such development boards is that they can be used both as means for prototyping as well 

as in the context of the actual final implementation of the EnerMan intelligent edge node. 

In Figure 2 the overall architecture and concept of the EnerMan intelligent Edge node is presented. 

The node will accept and process data from the distributed sensors using a platform that operates 

both in the software and hardware domains. These data are processed by the MPSoC unit that runs a 

Linux-based OS, i.e., PetaLinux, on its software side and uses its PL to implement specific types of IP 

cores, i.e., functional modules, with optimized processing and energy consumption metrics, on its 

hardware side. Naturally, the OS is equipped with all the necessary firmware for software to hardware 

communication provided by the Xilinx Runtime (XRT) library that accompanies the embedded OS 

distribution. On top of the OS, however, we have implemented and configured additional 

reconfigurability/flexibility features to support the EnerMan node requirements. To achieve software 

reconfigurability we introduce in the execution environment Docker based containerization, i.e., 

Docker containers, that will allow for the introduction to the node, input from the other EnerMan 

planes such as the Management plane as well as support of functionality that cannot be offered by 

the Xilinx supported PetaLinux OS. In other words, the data collection and control plane, will support 

an interactive relationship between itself and the other EnerMan framework components such as the 

other planes as well as the sensors and actuators.  

Furthermore, given that many Machine Learning and Deep Learning core software libraries are 

implemented in the python programming language, in the EnerMan execution environment we 

integrate the PYNQ python library offered by the Xilinx tool into the PetaLinux OS environment as an 

alternative mechanism of supporting hardware (FPGA PL) reconfiguration. Note, that existing Xilinx 

solutions offer hardware reconfiguration through PetaLinux either using the native Xilinx runtime 

(XRT) or using PYNQ python Jupyter notebooks, not both. We have managed to employ both such 

approaches in the EnerMan edge/end node execution environment. Beyond that, we have managed 

on top the above two hardware reconfiguration approaches, software reconfiguration through Docker 

containers. 

As shown in Figure 2 the EnerMan edge/end node architecture consists of 4 different layers. The first 

layer, hardware layer, includes the FPGA fabric (the programmable logic) on which using the EnerMan 

execution environment capabilities (through the XRT or the PYNQ python library) we can deploy the 

hardware part (the designed IP Cores) of an EnerMan application (as will be demonstrated in section 

5 of this deliverable).  Above the hardware layer, there is the processor layer that is executing the 

software part of an EnerMan application (e.g., the EnerMan software agents). The EnerMan 

applications themselves are deployed using the PetaLinux OS environment that constitute the OS layer 

of the EnerMan edge/end node. On top of this layer, we have built the overall EnerMan execution 

environment functionality that as mentioned in the previous paragraphs includes the Docker 

container support and the PYNQ library support that has been adapted to be used in parallel with the 

XRT environment. The above capabilities rely on the EnerMan application backbone that includes the 

necessary core, backend, functionality to enable the described execution environment. Finally, this 

application layer, includes the necessary software functionality to securely transmit the collected data 

or relevant extracted data using the TLS1.3 protocol that is enhanced with quantum – safe security 

capabilities to support long lasting and strong security. 
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Figure 2. The implementation setup for the Data Collection and Control Plane 

To fully employ the efficient execution of an algorithm of the EnerMan software agent (in the form of 

an executable application) we follow the process shown in the lower left side of Figure 1. At design 

time we obtain the algorithm software implementation and place is in a controlled environment 

where we use various computation profiling tools like control flow graph analyzers showing the 

dependence between functions of the algorithmic implementation and their time delay or flame 

graphs showing the memory usage and memory depth of such function during execution. The goal is 

to identify computationally demanding or slow execution functions (or software code in general) and 

following a crude hardware /software partitioning reassign the execution of such functions on 

dedicated hardware Intellectual Property (IP) Cores that are deployed within the EnerMan edge node 

execution environment.  

2.3. Conceptual Usage of the EnerMan edge/end node Execution Environment 

The EnerMan edge node and its execution environment is used in accordance with the overall 

EnerMan framework/platform as shown in Figure 3. The EnerMan edge/end node collects input from 

the pilots in the form of datasets (the format varies from pilot to pilot), processes that input and 

forwards the result to the system layer of the EnerMan framework (deployed in public or private 

cloud). Typically, the consumer of the EnerMan edge/end node results is the EnerMan Big Data 

Analytics Engine. Also, the EnerMan edge/end node is acting as an enabler of control configurations 

that stem from the EnerMan intelligent Decision Support System (iDSS) by forwarding those 

configurations to the pilot site infrastructure. In practice, given the EnerMan pilot site constrains (and 

not to disturb the actual factory production lines/process) the actuation configuration is forwarded to 

the Factory human personnel for evaluation (acting as suggestions).  

Most importantly in Figure 3, the currently identified preprocessing applications (acting as the 

EnerMan edge/end node software agents) are being shown and their interaction with the overall 

EnerMan framework is briefly presented. Typically, each pilot collects data from the in-field sensors 

deployed in the factory and stores them in some data collection point. The EnerMan edge node acting 

as data aggregator interacts with that collection point and consumes such data by initially transferring 

them (in a synchronous or asynchronous way depending on the pilot needs) to edge node storage 

area and then harmonizing them using a data harmonization component. This component’s goal is to 

prepare the pilot data in order to be fit for the EnerMan platform, mainly for the EnerMan big data 

analytic engine. The EnerMan edge node data harmonizer produces datasets that can be either 

directly forwarded to the Big Data analytics Engine or can be further preprocessed within the EnerMan 
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edge/end node. The preprocessing performed at the edge is associated with specific ML/DL based 

operation that follow the federated learning model. Each EnerMan edge/end node in such case acts 

as a client of an AI federation that has a local ML/DL model. This local model is trained using the data 

that are provided locally to each EnerMan edge/end node and when data classification is made the 

accuracy of the results is limited due to the volume and quality of this local dataset. However, to 

improve the overall classification (or even prediction) accuracy periodically the client local models are 

forwarded to a Federated Learning central server that compose the local models into a Federated 

global model that can provide considerably more accurate classification compared to single local 

models. The global model is then shared with all clients thus updating their local models and the 

training process resumes while classification is taking place. The overall process is further analyzed in 

section 3 where we also describe a demonstration of the approach for machine health status 

classification (in the overall concept of predictive maintenance) as part of a Deep Anomaly Detection 

classification concept. 

 

Figure 3 Conceptual usage of EnerMan edge node and interaction with the remaining EnerMan framework 

Apart from the processing of datasets from pilot’s sensors, the EnerMan edge/end node can also 

process data that are collected for specific reasons from sensors of the edge/end node itself. Infrared 

thermal camera images or videos from the manufacturing space is a good candidate for the 

capabilities of the EnerMan execution environment. Using such data, we can infer the Mean Radiant 

Temperature distribution on a given industrial manufacturing space and eventually visualize this 

information in the EnerMan visualization framework. 

Notably, the harmonized data as well as the data produced after preprocessing at the edge are 

transmitted to the rest of the EnerMan framework securely. Furthermore, we also make sure that the 
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EnerMan edge/end node is protected against security attacks that can potentially maliciously modify 

(or poison) the data processed within the EnerMan edge/end node. In general, the EnerMan execution 

environment is supporting several security services focusing on cyberattack prevention and detection. 

More information on the EnerMan edge/end node security is provided in section 4 of this deliverable. 

Finally, the EnerMan execution environment can handle control-configurations that are provided by 

the EnerMan iDSS. This activity is out of scope for this deliverable and will be analyzed in detail in the 

dedicated deliverable for T2.3 (i.e., Deliverable 2.4) 
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3. DATA PROCESSING AND ASSISTED INTELLIGENCE 

3.1. Data Harmonization  

Data harmonization describes the preparation of raw data originating from various sources with the 

goal to provide a more standardized and uniform data representation. It is an important stage in a 

data preparation pipeline since the raw data are produced in custom formats which are diverse and 

pose a challenge for the application of more advanced preprocessing technics (e.g., interpolation, 

resampling, clustering). The harmonization can be achieved by identifying similarities in the various 

data sets, retaining critical requirements, and generating a common standard. Data quality checks are 

also critical at this stage to ensure the data integrity and validity before data features are propagated 

to the next stage of preprocessing. 

3.1.1. The role of data harmonization in EnerMan 

Data harmonization as a component of the EnerMan platform aims to bridge data collection 

requirements between the edge node and the cloud infrastructure, addressed in WP2 and WP3 

respectively. As demonstrated in Figure 4, data collection begins at the end-user’s premises (Figure 4: 

A), with customized representations built internally to serve the needs of the organization (different 

PLCs or recorders). Subsequently, EnerMan edge nodes apply the harmonization pipelines (Figure 4: 

B) that ensure that the data stored in the cloud infrastructure (Figure 4: C) have an aligned 

representation that will allow to process them with more generic methodologies across pilots and use 

cases. Thus, the data harmonization component facilitates the data collection between the end users 

and the Big Data Analytics Engine (BDAE) in the cloud (WP3-T3.1), by implementing a data pipeline 

from raw data provided by the use cases to structured time-series data, available for downstream 

tasks.  

 

Figure 4 EnerMan data collection stages: (A) use-case, (B) WP2-T2.1 (edge), (C) WP3-T3.1 (cloud)  

 

3.1.2. Data harmonization targets 

In this section we will discuss some concrete data aspects from the EnerMan raw datasets that the 

data harmonization component aims to transform into a uniform representation across use cases.  

File formats: Raw datasets are provided in diverse formats, e.g., .xlsx, .csv. Moreover, .xlsx files often 

consist of multiple sheets corresponding to various aspects of the same use case and process (e.g., 

same measurement with different time aggregation). The harmonization task aims to convert the files 

into a uniform format suitable for modelling frameworks and database ingestion processes (.csv or 

.parquet depending on the batch sizes). 

 

Data Schema: Attributes’ names are often defined in forms that are not suitable for big data 

processing, e.g., they contain spaces, are split in multi-raw header or are not in English. Furthermore, 

the data schema is not always readily transferable to a tabular format since there might be multiple 

headers to a single sheet or merged cells might occur.  
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Missing data indication: Missing value indications vary across use cases and organizations, e.g., empty 

cell, null, ‘0’ or ‘N/A’, ‘NaN’ etc. Data harmonization must detect all these different representations 

and transform them into a uniform type, recognizable from a programming point of view.   

 

Measurement units: Units are not always explicitly indicated. In case a data set has the same type of 

measurement (for example temperature) the harmonization layer needs to ensure that the unit of 

measurements is always the same (e.g., Celsius). 

 

Timestamps: Another source of variation is related to the time zone of the timestamps of each 

measurement. It is not always evident whether the initial data collection used the local time zone or 

Coordinated Universal Time (UTC). Furthermore, organizations, use cases and processes utilize diverse 

timestamp formats (depending on their PLC or recording configurations), or even separate date and 

time columns breaking the timestamp in two parts. The harmonization pipelines need to change these 

dates into the same time zone and in unique format to improve data usability and integrity. 

 

Metadata information: Raw datasets are not accompanied by metadata information that would be 

necessary for advanced preprocessing and analytics in the cloud. Examples of such information are 

the expected datatypes for each measurement, min-max limits or descriptive statistics for numerical 

values, expected classes for categorical values, expected granularity or sampling rate, localization, 

measurement type (e.g., sensor, actuator), how should missing values be interpreted for a particular 

measurement and if they should be acceptable.    

 

 
Figure 5 Examples of data representation inconsistencies that need to be addressed by the data harmonization component. 

Multiple sheets with different granularity of the same measurements, different indications for missing values, diverse 
timestamps format, date and time split in different columns. 

3.1.3. Technical implementation  

Data Harmonization is implemented as a python package which can be integrated to the EnerMan at 

the edge node’s Data Aggregator and is configured to communicate with the Big Data Analytics Engine 

(WP3-T3.1). A higher-level depiction of the architecture is presented in Figure 6. The main components 

of the Data Harmonization package are the following: dedicated harmonizers for each use case, a data 

loader class, a library of harmonization utilities, and a library for data quality checks.  
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Figure 6 The data harmonization modules are integrated in the Data Aggregator edge node and communicate with the Big 
Data Analytics Engine in the cloud. 

 

Data harmonization at the edge level is necessary as described in Section 3.1.1 to support the Big Data 

Analytics Engine, a centralized EnerMan component that is responsible for handling advanced 

preprocessing tasks. The data harmonization package is designed to be a lightweight solution adapted 

to the use case specific characteristics and separated from the cloud infrastructure which involves 

processes that require data that have been previously standardized. This setup enhances modularity 

of the EnerMan solution and a balance between specialization and generalization, addressed at the 

edge and in the cloud, respectively.  

More concretely, the communication entails fetching the use case specific Data Model from the Big 

Data Analytics Engine to the edge, and in the other direction, transferring the harmonized datasets to 

the cloud. Data Model prototypes are designed and developed in WP3-T3.1 (a centralized approach is 

taken since they are expected to be used also from downstream tasks that only communicate with 

the Big Data Analytics Engine). A preliminary form of a Data Model is depicted in Figure 7. 
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Figure 7. Preliminary Data Model sample 

 

The components of the harmonization package are the following: 

Harmonizers: A python class designed for each use case’s data profile. It takes a use case specific Data 

Model as an argument and provides methods for loading the data, preprocessing it with the 

harmonization functions that correspond to the specific use case, and applying the quality checks on 
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the harmonized data. The Data Model contains information to be used by the class methods, e.g., the 

expected feature names, data types, localization information.  

Data loader: A python class which is called from the harmonizers and handles the loading of the data. 

It provides methods to enable loading different data formats. 

Harmonization utilities: A library of preprocessing functions to harmonize the data. For example, 

there are functions to replace the missing data indication with a standardized form, to transform local 

timestamps to UTC+00 and datetime formats to ISO 8601 (yyyy-MM-dd'T'HH:mm:ssZ). It also provides 

functions to transform attributes’ names and data types according to a given list provided by the 

Harmonizer class as described in the Data Model.  

Data quality checks: A library which contains functions to run basic data quality checks. For example, 

functions that examine whether the data schema matches the Data Model schema, the data types are 

the expected ones, min and max values whenever defined are not exceeded.  

The final harmonized datasets are stored in an unstructured database in the cloud where they are 

further preprocessed in the final layer of preprocessing (WP3-T3.1) to derive time-series data. 

3.2. Federated Learning Based Machine Status Detection  

3.2.1. Federated Learning Introduction 

Traditional distributed deep learning approaches demand a large amount of private data to be 

processed and aggregated at central servers during the model training stage by employing some 

suitable distributed optimization algorithm. However, this distributed process suffers potential data 

privacy leakage issues. On the other hand, federated learning (FL) has been emerging as a promising 

approach for decentralized model training focusing on the data privacy aspect of the problem. In 

particular, it allows the clients to train and acquire an accurate globally trained model without sharing 

any private data with other users.  

The scope of the federated learning scheme is to obtain a global model, say 𝜃 (Eq. (2)) that can 

minimize some aggregated local function 𝑓𝑘(𝜃𝑘) (Eq. (1)), where x denotes the data feature, y is the 

data label, 𝑛𝑘 is the local data size, 𝑛 = ∑ 𝑛𝑘
𝐶𝑥𝐾
𝑘=1  is the total number of sample pairs, C stands for the 

participation ratio assuming that not all local clients participate in each round of model updates and 

k is the client index. 

𝑓𝑘(𝜃𝜅) =
1

𝑛𝜅
∑ 𝑙𝑜𝑠𝑠(𝑥𝑖 , 𝑦𝑖; 𝜃𝜅)

𝑛𝑘
𝑖   (1) 

min
𝜃

𝑓(𝜃) =  ∑
𝑛𝑘

𝑛
𝑓𝑘(𝜃𝑘)

𝐶𝑥𝐾

𝜅=1

                       (2) 

Federated learning can be divided into two major categories, namely the horizontal and vertical FL 

based on the characteristics of data distribution across the participants [1]. In this study, we focus on 

the horizontal federating learning scheme. 

3.2.2. Horizontal Federated Learning  

Horizon FL or homogeneous FL relates the case where the local training data of clients share the same 

feature space but have different sample space. Figure 1 exemplifies this scenario, where client 1 and 

client 2 share the same personal features (feature space) but they contain data for different persons.  
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Figure 8. A demonstration of data partition in horizontal federated learning. In this example the two clients contain five 
personal features, namely name, age, sex, height and weight. However, each client has data for different persons. 

The FedAvg algorithm [2] is a typical case of the horizontal FL providing an efficient methodology to 

train a global model without sharing any client’s data. In more details, the global model, say 𝜃 and the 

local models 𝜃𝑘 share the same deep learning architecture with different model parameter values, 

since each local model is independently optimized based on its local data. After the local training, the 

models are uploaded to the server. Considering that all local models have the same structure, the 

server aggregates the local models and generates the corresponding global model 𝜃. Algorithm 1 

summarizes the FedAvg approach. 

 

Algorithm 1. FedAvg. K is the total number of clients; B is the size of mini-batches, T is the total number of communication 
rounds, E is the local training epochs, and η is the learning rate. 

3.2.3. Federated learning on non-IID Data  

Horizontal federated learning approaches, such as FedAvg algorithm exhibit satisfactory performance 

on Independent and Identically Distributed (IID) data. FL methods depend on stochastic gradient 

descent, which is widely employed for training deep learning models achieving good empirical results. 

The IID sampling of the training data is pivotal to guarantee that the stochastic gradient is an unbiased 

estimate of the full gradient. However, in real world settings and applications usually the local data of 

each client is not IID. Non-IID data heavily affect the performance of the horizontal FL models, since 

the local data distributions are different from the global data distribution, thus the averaged local 

model parameters may diverge from the global model parameters. In literature there is a plethora of 

studies that aim to address the challenges that non-IID data impose [1], [3], [4].  
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3.2.4. Personalization layer approaches  

Different from the FedAvg approach, in this case each client is allowed to contain some personalized 

layers in the deep learning models focused on the local data distribution of the clients. Figure 9 

illustrates an example of these networks, where each client model comprises of personalization layers 

(filled blocks) and base layers. It should be highlighted that only the base layers are uploaded to server 

for the global model aggregation, thus significantly reducing the communication costs, since only the 

base layers need to be uploaded to server. 

FedPer algorithm [3] constitutes a characteristic case of these approaches. Particularly, in the FedPer 

model the base layers are shallow neural networks focused on capturing high-level representations of 

the local data and the personalization layers are deep neural networks aiming to tackle the 

classification problems. Algorithm 2 summarizes this method.  

 

Figure 9. An illustration of horizontal FL with personalization layers. Only the base layers (filled blocks) are uploaded to 
server for the global model aggregation 

 

Algorithm 2. FedPer 
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3.2.5. Clustering based approaches  

Considering the highly non-IID distribution of the clients’ data, instead of having only one global 

model, a client clustering method is proposed to develop a multi-center system by clustering the 

clients into different clusters. By creating multiple global models this FL framework is able to capture 

the heterogeneous data distribution of the clients. Nevertheless, note that the data distribution of 

each user is private. Thus, a clustering methodology is developed that performs the clustering of the 

users based on the similarity of the loss value, called iterative federated clustering algorithm (IFCA) 

[4], which is summarized on Algorithm 3. In more details, in this approach the server generates 

multiple global models and send all models to the participants. The participants train the cluster 

models based on their local data and compute the loss values of all models. Then, each clients updates 

the cluster model with the smallest loss and upload it to the server for cluster model aggregation.  

 

Algorithm 3. Iterative federated clustering algorithm (IFCA) 

3.2.6. Federated learning for machinery fault diagnosis  

Machinery fault diagnosis employing condition labelled data constitutes a pivotal tool in modern 

industries proving numerous benefits such as machine reliability, operation safety and low 

maintenance costs. Furthermore, several studies have pointed out the strong relation between the 

early fault diagnosis and the energy consumption [5]. Exploiting the ground-breaking progress of the 

recent deep learning models, data driven approaches has been widely employed by many industries 

to perform machinery anomaly detection. Although these data driven methods exhibit great 

performance accuracy, they require large amounts of high-quality supervised data to optimize an 

accurate diagnostic model. In real industrial scenarios labelled condition monitoring data are usually 

difficult and expensive to collect [6]. 

3.2.7. Problem Formulation  

Taking into consideration that different companies and factories contain similar types of working 

machines, and they usually have their own supervised dataset for fault diagnosis a Federated learning 
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framework is employed to tackle the above-mentioned problem. Thus, the clients (different 

industries) can collaborate to develop a global fault diagnosis classifier in the central server, without 

sharing any sensitive information regarding their personal data. This study is conducted under the 

following assumptions: 

Multiple clients participate in the FL system, and each client has limited training data to effectively 

develop its fault diagnosis model independently. 

The fault diagnosis procedures of all the clients are the same, indicating that different participants 

share the same label space.  

3.2.8. FedAvg and Network architecture  

To perform the FL scenario the FedAvg algorithm is used, described analytically in Algorithm 1. At each 

training round, the fault diagnosis model is locally updated within each client, and then it is uploaded 

to the server for model aggregation. The architecture of the deep neural network that is shared by the 

server and the clients is illustrated in Figure 10. The model consists of the following modules. First, 

two 1-D convolutional layers with filter size of 9 and filter number of 10 are employed to perform the 

feature extraction process. After flattening, a fully connected layer with 64 neurons that is used to 

capture the more complex features of the data, and final a fully connected layer is adopted where 

each neuron stands for the classification confidence of each health condition.  

 

Figure 10. The proposed fault diagnosis deep learning model. 

To train the local models each client employs the cross-entropy loss function 

𝐿𝑐 =  −
1

𝑛𝑠
∑ ∑ 1{𝑦𝑖 = 𝑗} log

𝑒𝑥𝑖,𝑗
ℎ

∑ 𝑒𝑥𝑖,𝑘
ℎ𝑁𝑐

𝑘=1

𝑛𝑐

𝑗=1

𝑛𝑠

𝑖=1

, 

where 𝑛𝑠 is the number of local data for the client, {𝑥𝑖 , 𝑦𝑖}
𝑖=1
𝑛𝑠  denotes the labelled samples and the 

𝑛𝑐  stands for the number of classification classes.  

3.2.9. Experimental Setup  

Dataset1: The Case Western Reserve University (CWRU) rolling bearing dataset contains vibration 

acceleration signals collected from the drive end of the motor and the sampling frequency is 12 KHz. 

4 machinery health states are examined, i.e., healthy (H), outer race fault (OF), inner race fault (IF) 

and ball fault (BF). The corresponding fault diameters are 7, 14, 21 mils. Thus, we have one healthy 

and three fault modes were classified into ten categories (one health state and 9 fault states) 

according to different fault sizes. Figure 11 summarizes the under examined health conditions.  

 

Figure 11. Description of the CWRU dataset. 

 
1 https://engineering.case.edu/bearingdatacenter 
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Training Parameters: The number of training and testing labelled data was 17987 with dimension, 

d=500. Furthermore, the batch size was set to 16, the number of training epochs for updating the local 

models was 30, while the number of communication rounds between the server and clients was set 

to 50. Finally, the Adam optimizer was employed to train the proposed models and the leakyRelu was 

used as activation function. 

3.2.10.  Results  

To quantify the performance of the under-examined federated learning scenario, extensive numerical 

experiments were conducted in the context of machinery fault diagnosis. In more details, two 

scenarios were examined were the first corresponds to the IID case and the second focuses on the 

non-IID case. 

IID Scenario  

In this scenario the local data of the clients are independent and identically distributed (IID), thus each 

client contains labelled data from all the under-examined health conditions (10 in total). Particularly, 

the performance of the FedAvg algorithm is examined with 5 and 10 clients, where the number of 

training data per class was limited into the following range {100, 200, 300, 400, 600, 1000}. Figure 12 

demonstrates the classification accuracy of the FedAvg scheme. It is obvious that the case with the 5 

clients exhibits better performance compared to the scenario with the 10 clients, especially when 

fewer training data is used.  

 

Figure 12. The proposed fault diagnosis deep learning model. 

 

Non-IID Scenario  

In this section a more realistic situation is considered, where the local labelled data of different clients 

are not IID. To this end two non-IID scenarios were examined 

• Scenario 1: with 10 faulty bearing conditions in total, 9 clients are considered where each 

clients contains data only from one faulty condition and some data from the healthy condition 

(category 1).  
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• Scenario 2: 9 clients were considered where each client has data of 3 conditions chosen from 

conditions [2, 3, 4] or [5, 6, 7] or [8, 9, 10] as described in Figure 11. Moreover, all clients have 

data from the healthy state.  

Table 1. Accuracy per non-IID scenario 

 

It is evident that the proposed federated learning approach although exhibits very good results 

(almost 100% accuracy) for the IID. scenario, in the case of the non-IID. scenario the performance 

drops dramatically. Thus, better, and more suitable approaches for the non-IID. case should be 

explored. In future work, we aim to implement FL for non-IID data methodologies, such as algorithm 

[3], [4] and compare their performance with the FedAvg method. 

 

3.3. Indoor Industrial space Mean Radiant Temperature distribution (MRT) estimation 

using infrared thermography images 

The Mean Radiant Temperature (MRT) at a specific point in an indoor space is defined as the uniform 

temperature of an imaginary enclosure in which radiant heat transfer from the examined point (e.g., 

object) equals the radiant heat transfer in the actual nonuniform enclosure [1]. Due to the fact that it 

is difficult to measure MRT values directly, various non-intrusive instruments (such as GTs (globe 

thermometer) and IR cameras) are employed to derive approximate MRT values [2]. In more detail, 

the MRT at a point in indoor space can be determined from the temperatures of the surfaces that 

enclose the point, as shown in equation (1).  

𝑇𝑀𝑅𝑇
4 = 𝜀1𝑇𝑠1

4 𝐹𝑝−1 +  𝜀2𝑇𝑠2
4 𝐹𝑝−2 + ⋯ + 𝜀𝑛𝑇𝑠𝑛

4 𝐹𝑝−𝑛           (1) 

where 𝑇𝑠𝑖
 stands for the temperature of the surface 𝑖, 𝐹𝑝 – 𝑖 corresponds to the view factor from the 

target point to surface 𝑖 and 𝜀𝑖  is the emissivity of surface 𝑖, for 𝑖 = 1 … 𝑛. The view factor is defined 

as the percentage of radiant energy emitted from on surface to another surface, which reflects the 

geometric shape and positional relationship between different objects. Note that when wall surfaces 

have high emittance 𝜀𝑖  can be assumed to be equal to 1 [3], [4]. 

3.3.1. Different Scenarios examined in literature 

In literature numerous studies have explored the potentials of analyzing the MRT distribution under 

different scenarios and settings. The MRT values can provide valuable information regarding the 

temperature distribution in both small and large indoor [3], [5] and outdoor spaces [4]. In [3], the 

authors examined the MRT distribution in a small indoor space with dimensions 5 m × 3 m × 2.5 m. 

Furthermore, in [5] they measure a wide range of MRT values to understand thermal comfort 

conditions for a large indoor space. In particular, they conducted experiments in a dome stadium with 

indoor dimensions 68 m × 160 m ×218 m (height × width × length). However, the MRT can be also 

employed for large outdoor spaces. For instance, in [4], they estimate the MRT distribution in an 

outdoor environment located in the teaching buildings district of Guangxi University (see Figure 13).  
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Figure 13. MRT distribution maps in a pedestrian space [4] 

3.3.2. Mean Radiant Temperature Calculation using the IR camera 

The methodology to estimate the MRT distribution of an indoor space consists of two major stages: 

(1) calculating the view factors in every point of the room where MRT is to be calculated and (2) 

measuring the surface temperatures with the IR camera.  

3.3.3. Calculation of View Factors 

As mentioned before, the view factor represents the fraction of the total radiation emanating from a 
surface in all possible hemispheric directions across all possible wavelengths, as received by another 
object of surface [3]. Deriving the view factors requires modeling the indoor space. In particular, the 
view factor for a very small surface area on the wall, say 𝐴𝑖, from an arbitrary point in space (x, y, z) 
can be estimated as 

𝐹𝑝−𝑖 =
𝐴𝑖

′

4𝜋
 (2) 

where 𝐴𝑖
′  is the projection of the surface area 𝐴𝑖  to the sphere of radius r=1, as shown in Figure 14.  

 
Figure 14. View factors calculation 

After that the projection area 𝐴𝑖
′  is calculated as follows 

𝐴𝑖
′ =

𝐴𝑖𝑐𝑜𝑠𝜑

𝑥2 + 𝑦2 + 𝑧2
= 𝐴𝑖

𝑡

(𝑥2 + 𝑦2 + 𝑧2)
2
3

 (3) 

where 𝑡 is the distance from the originating point to the wall. Note that the wall surface area 𝐴𝑖  should 
be adequately small [3].  
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Having for each surface 𝐴𝑖  the corresponding temperature provided from the IR camera, the MRT 
distribution of the indoor space can be estimated by computing for several points in the indoor space 
the view factors according to equation (2). 

 

Figure 15. Modelled enclosed room [3] 

3.3.4. Case study 

Using 3D models of indoor spaces (e.g., Figure 15) and thermal images to estimate the surface 

temperatures, our goal is to compute based on equation (1) the MRT distribution of industrial 

environments by implementing small case trials according to the premises of the ISI. Based on the 3D 

models of the under-examined space and the temperatures of the indoor surfaces provided by the IR 

camera, our target is to derive detailed maps concerning the MRT distribution. Figure 16 provides an 

example of these maps. Note that the surfaces can be divided into smaller surface areas 𝐴𝑖  (such as 

50cm x 50cm, 25cm x 25cm, 10cm x 10cm, 5cm x 5cm) according to the temperature distribution on 

the wall surfaces, thus providing more accurate results.  

 

Figure 16. MRT distribution maps [3]. The wall surfaces are divided into smaller surfaces with different sizes to determine 
the optimal value regarding the accuracy of the MRT calculation. 



 

30 
 

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components 

4. EDGE NODE SECURITY ASPECTS 

Traditionally, the Industrial Control Systems (ICSs) that are employed to control an industrial process, 

often referred to as Supervisory Control and Data Acquisition (SCADA) systems, are based on primitive 

implementations lacking cyber-security considerations and practices. Reasons for this can be found in 

the lack of interoperability between different vendors and/or the adoption of proprietary protocols 

and data formats. Ensuring interoperability between platforms and devices has two major challenges, 

i.e., their seamless operation and their security. The weakest link in this chain, from a cyber-security 

perspective, are the endpoints on SCADA systems, i.e., the Programmable Logic Controllers (PLCs) with 

their sensors and actuators. Not only is their firmware full of flaws with no regular update policy, but 

also, many of the most popularly used communication protocols lack authentication or encryption [7]. 

In legacy industrial deployments, the isolation of the SCADA deployments had been a viable option, 

however, in today's interconnected and technologically mobile world, true isolation is nearly 

impossible. It is, therefore, crucial that in EnerMan we tackle edge node security aspects efficiently 

since we are planning to collect data form the use case sites by interconnecting the edge nodes to the 

targeted ICSs.  

4.1. Attack Threat Model  

Industry 4.0 and Smart manufacturing companies are subjectable to threats and attacks, which can 

affect their production, infrastructure, personnel, and their operations in general. These threats and 

attacks should be considered during the development of EnerMan and should be addressed during 

design and implementation. Even if the manufacturers are not aware of them or think of them as a 

second-class priority, these threats can disrupt their operations to such an extent, which could create 

huge loss of revenue or even leave a whole country out of resources. Characteristic examples are the 

disruption of the largest petroleum pipeline of the east coast by ransomware, and a major electricity 

supplier in Johannesburg which was hit again by a ransomware, which resulted in leaving several 

citizens without electricity. 

ENISA developed guidelines about the security in Industry 4.0 and provided security measures, which 

should be implemented for a factory to be considered secure. They provide a threat taxonomy, which 

suits the needs of EnerMan, and we argue that EnerMan should address, at minimum, those threats, 

and measures against them. There are several categories and threats which should be addressed. 

Below we describe the most important ones, which should be considered during the implementation 

of the project. 

4.1.1. ICS threats 

Denial-of-Service (DoS) is an attack meant to disrupt the availability of a machine or a network by 

making it inaccessible to the legitimate users. DoS attacks flood the target with traffic which is 

intended to deplete the resources of a machine or a network, so it cannot not process any legitimate 

traffic and packets. In industry 4.0 a DoS attack can target Industrial Internet of Things (IIoT) systems 

resulting in system unavailability and production shut down. Attackers could also take advantage of 

many IIoT devices in industrial environments and create a botnet which can later be used to conduct 

attacks on other infrastructures. 

Malware is a piece of malicious software, normally a file or code, which is normally delivered through 

the network, that infects, steals, monitors or conducts any function that an attacker desires. Usually, 

an attacker uses a remote-control center to control the malware and it can later send commands to 

perform unwanted actions. These actions may cause damage to an OT system, operational processes, 

and related data. Ransomwares, viruses, trojan horses, and spyware are common examples of this 
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threat. Malwares can affect critical systems such as servers, IIoT devices, mobile devices, cloud 

computing services etc. 

Attackers may also try to modify unwanted and unauthorized data. By compromising OT or production 

systems such as SCADA, they could alter and tamper data that play an important role in the decision-

making of the industry, which could result in inappropriate decisions based on false information. In 

the same context is the threat of compromised personal and sensitive information. Attackers may try 

to gain unauthorized access to personal devices or in the company’s cloud server to collect data about 

the employees and their roles, their performance, their names, salaries etc. This is a privacy leakage 

issue which could expose personnel information and hurt the trust of the company. 

An attacker may try to gain access to an organization by using a brute force attack. The attacker 

submits many passwords and passphrases with the goal of eventually guessing the correct one, so she 

can log into the systems of the organization. Brute force is a common attack, which requires low to 

nontechnical expertise to be conducted. It still poses a big problem among organizations especially 

the ones that allow the utilization of uncomplicated or default passwords for industrial devices and 

systems. 

A man in the middle attack (MITM) is an attack where the perpetrator positions himself in the middle 

of a channel between a user and an application in order to eavesdrop or to impersonate one of the 

two parties. The attacker can just listen to exchanged messages in order to steal company’s sensitive 

information such as passwords, credentials, confidential files, or can even modify and delete messages 

to disrupt communication. This threat could have serious implications for the company since data 

could be leaked, resulting in system compromisation, or the operations of the organization could be 

disrupted by false messages transmitted by the attacker. In a similar context, another threat is the 

communication protocol hijacking. In this attack the attacker takes control of an existing 

communication session between two network components. This could lead to sensitive data leakage, 

password leakage or other confidential information compromisation.  

Network reconnaissance is the first part of any hacking operation. Attackers try to learn the target 

environment that can help in the identification of potential attack vectors and exploits on potential 

vulnerabilities. Reconnaissance efforts can be either passive or active. In passive reconnaissance the 

attacker listens to the network and services without taking any actions in order to remain undetected. 

On active reconnaissance, the attacker will actively send packets and communicate with devices and 

resources, either by scanning or by connecting to them in order to collect as much information as 

possible. In industry 4.0, such an attack could reveal internal network information like connected 

devices, network protocols, open ports etc., which the attacker could later utilize to orchestrate an 

attack to the organization.  

4.1.2. Threat Agents 

Threats sources for ICSs are located in various groups, including adversarial sources, such as foreign 

governments, terrorists, competition spies, dissatisfied employees, malicious intruders, as well as 

system errors and malfunctions, equipment errors or unintended events e.g., accidents and human 

errors. Table 2 provides an overview of them. 

Table 2: Adversarial Threats to ICS [8] 

Threat Agent Description 

Attackers 
Attackers break into networks for the thrill of the challenge or for bragging 

rights in the attacker community. While remote cracking once required a fair 

amount of skill or computer knowledge, attackers can now download attack 
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scripts and protocols from the Internet and launch them against victim sites. 

Thus, while attack tools have become more sophisticated, they have also 

become easier to use. Many attackers do not have the requisite expertise to 

threaten difficult targets such as critical U.S. networks. Nevertheless, the 

worldwide population of attackers poses a relatively high threat of an isolated 

or brief disruption causing serious damage. 

Bot-network 

operators 

Bot-network operators are attackers; however, instead of breaking into 

systems for the challenge or bragging rights, they take over multiple systems 

to coordinate attacks and to distribute phishing schemes, spam, and malware 

attacks. The services of compromised systems and networks are sometimes 

made available on underground markets (e.g., purchasing a denial-of-service 

attack or the use of servers to relay spam or phishing attacks). 

Criminal groups 

Criminal groups seek to attack systems for monetary gain. Specifically, 

organized crime groups are using spam, phishing, and spyware/malware to 

commit identity theft and online fraud. International corporate spies and 

organized crime organizations also pose a threat. through their ability to 

conduct industrial espionage and large-scale monetary theft and to hire or 

develop attacker talent. Some criminal groups may try to extort money from 

an organization by threatening a cyber attack 

Foreign 

intelligence 

services 

Foreign intelligence services use cyber tools as part of their information 

gathering and espionage activities. In addition, several nations are aggressively 

working to develop information warfare doctrines, programs, and capabilities.  

Insiders 

The disgruntled insider is a principal source of computer crime. Insiders may 

not need a great deal of knowledge about computer intrusions because their 

knowledge of a target system often allows them to gain unrestricted access to 

cause damage to the system or to steal system data. The insider threat also 

includes outsourcing vendors as well as employees who accidentally introduce 

malware into systems. Insiders may be employees, contractors, or business 

partners. Inadequate policies, procedures, and testing can, and have led to ICS 

impacts. Impacts have ranged from trivial to significant damage to the ICS and 

field devices. Unintentional impacts from insiders are some of the highest 

probability occurrences. 

Phishers 

Phishers are individuals or small groups that execute phishing schemes in an 

attempt to steal identities or information for monetary gain. Phishers may also 

use spam and spyware/malware to accomplish their objectives. 

Spammers 

Spammers are individuals or organizations that distribute unsolicited e-mail 

with hidden or false information to sell products, conduct phishing schemes, 

distribute spyware/malware, or attack organizations (e.g., DoS). 

Spyware/malware 

authors 

Individuals or organizations with malicious intent carry out attacks against 

users by producing and distributing spyware and malware.  

Terrorists 
Terrorists seek to destroy, incapacitate, or exploit critical infrastructures to 

threaten national security, cause mass casualties, weaken the economy, and 

damage public morale and confidence. Terrorists may use phishing schemes or 
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spyware/malware to generate funds or gather sensitive information. Terrorists 

may attack one target to divert attention or resources from other targets. 

Industrial spies 
Industrial espionage seeks to acquire intellectual property and know-how by 

clandestine methods 

4.1.3. Security Requirements  

To counter the numerous threats that can target Industry 4.0 organizations as those that are 

considered in the EnerMan project, security mechanisms have to be implemented in order to secure 

their assets. Smart manufacturing companies should always keep an eye on the level of security and 

practices they have in place, in order to minimize the threat level and ensure their continuous 

operation. Below we describe in high level what are the minimum mechanism that we believe industry 

4.0 should have in place in order to ensure its secure operations. 

Security mechanisms need to be used to ensure the integrity and trust of the data and the devices. 

Software needs to be verified before start running and ensure that is singed by the actual vendor and 

not tampered. IIoT devices need to be authorized to run in the network and secure channels needs to 

be utilized to ensure the integrity of the data and the connections. Cryptographic mechanisms should 

be used to ensure the data integrity and security. Also, all the production data need to be monitored 

either they are at rest or on transit to identify potential modifications. 

Cloud infrastructure and data stored in the cloud should also be secured in various aspects. Types of 

cloud utilized by the organization should take into consideration the laws and regulations of the cloud 

provider’s country and points of presence. Single points of failure should be avoided, and critical 

systems and applications should be identified, so a correct risk assessment can be made.  

About the business continuity and recovery, the critical systems and processes should be identified to 

determine the extent which they can influence the production. Risk assessments should be 

performed, and procedures should be in place to define a plan in case of a security incident.  

Communications between different machines should be secured either they operate inside the factory 

or if they connect to the internet. Secure cryptographic algorithms should be used to provide 

authentication, integrity and confidentiality between machines and private keys should be stored 

securely in a server. Messages should be checked to ensure that they are not tampered or that they 

are not replayed, and input validation should be in place to ensure that injection commands and cross-

site scripting (XSS) is avoided.  

Data should be encrypted either they are on transit or at rest and should be categorized based on 

their criticality. This should be the result of a risk analysis and risk assessment. Encryption and key 

management should be utilized to ensure that not all users have access to the data and anonymization 

of personal data should be in place whenever possible, to minimize security implications in case of a 

security breach. 

Access control policies should also be applied to ensure authentication of users and accounts, remote 

access, and user privileges. Minimal level of authentication should be used across all different IIoT 

devices. Multi-factor authentication should be used, and default password and usernames should be 

avoided. The least privilege principle should be applied, and roles should be properly assigned to each 

person. System users should have different accounts with different privileges, and access control 

systems and Privilege Access Management solutions should be in place.  

Correct security measures should be applied in the network and the protocols used in the factory. 

Industrial plants networks should be based on pre-defined zoning model with establishment of DMZ 

zones and control of traffic between zones. IIoT solutions should implement proven-in-use protocols 
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with known security capabilities, based on broadly accepted standards. Secure environments should 

be secured for key exchange and key management and proper use of cryptography should be applied 

to protect confidentiality, integrity and availability of data and information. The security should be 

strong and insecure protocols should be avoided. 

There also should be a monitoring system across the organization to detect anomalies and real-time 

attacks. Security logs should be collected and analyzed and periodic reviews of network logs, access 

control privileges and assets configurations should be conducted 

4.1.4. Security Architecture 

A high-level representation of the EnerMan security architecture is shown in Figure 17. Overall, its 

purpose is twofold. On the one hand, it is aimed at preventing malicious activities from becoming 

successful, i.e., it aims at reinforcing the flow data such that they become immune to infection by 

malicious activity. The second involves the aspect of detection and, in this particular case, what we 

have is a mechanism for picking out unwanted activity that has managed to become part of the data 

flow. 

The architecture consists of several levels, each of which correspond to a different part of a typical 

system that is going to use the EnerMan framework. Hence, there is the Industrial Data, which 

originate from the fringes of the architecture, e.g., sensor modules as edge devices in a factory, the 

Secure Gateway that is a little further up the hierarchy, i.e., the edge node of the system, and, finally, 

the cloud server. 

At each of these points, as well as in-between, EnerMan is going to implement security features that 

will setup a strong security mechanism. Hence, starting from the edge devices, EnerMan utilizes an 

intrusion detection mechanism named I2DS. This is implemented on MPSoC technology using the 

EnerMan edge/end node execution environment and is positioned right at the entry to the Data 

Aggregator, also co-hosted at the MPSoC. The I2DS operates on the data that are flowing in from the 

various edge devices used in the context of the various EnerMan use case providers’ industry setups. 

Having filtered the data and flagged any potentially malicious activity, the data is then processed inside 

the MPSoC by the data aggregator and, subsequently, it is encrypted for cyber-attack prevention 

purposes. 

The encrypted data are going to fulfil TLS secure session communication protocol requirements, which 

will assist in the consolidation of a prevention mechanism between the MPSoC (edge devices) and 

Gateway (edge node) layers of the architecture. Just prior to the introduction of the MPSoC data into 

the gateway, a second Intrusion Detection System (IDS) mechanism is deployed. Hence, a detection 

mechanism just prior to the EnerMan gateway ensures that the encrypted data have indeed not been 

corrupted. Subsequently, an Intrusion Prevention System (IPS) mechanism follows on the IDS-

processed data at the gateway-level of the architecture. 

Hence, and similar to the security steps followed at the EnerMan edge/end node MPSoC, the EnerMan 

gateway(s) will encrypt the data that are to be propagated further up the architecture, i.e., the 

EnerMan cloud devices, by ensuring that the TLS protocol standards are met for prevention purposes 

in the context of edge node and cloud communication. 
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Figure 17. The EnerMan Security Architecture 

4.2. Security Mechanisms  

4.2.1. Cybersecurity Attack Detection 

I2DS: Industrial Intrusion Detection System   

I2DS is the EnerMan intrusion detection mechanism that will be deployed across the system and at its 

very edges, i.e., it is the intrusion detection mechanism that will operate on the data coming in from 

the architecture’s edge devices. I2DS is going to be hosted by the EnerMan edge/end node MPSoC 

devices, which are devices that employ FPGA technology. Hence, this first layer of intrusion detection 

capability is going to be implemented directly on (reconfigurable) hardware using the EnerMan 

edge/end node execution environment described in Section 2. 

Specifically, I2DS consists of optimized modules that implement machine learning models for intrusion 

detection.  The modules use rules for string searching that are appropriate for the industrial 

environments’ data. The implementation of the ML model’s architecture is to be developed using 

suitable frameworks so that the final design not only fulfills the functional criteria of the ML model, 

but it also offers satisfactory performance, such as a high data throughput at the cost of reduced 

power consumption requirements. 

IDS:  Intrusion Detection/Prevention Systems 

Intrusion detection systems (IDS) are systems that monitor network traffic for suspicious activity and 

alerts when such activity is discovered whereas Intrusion Prevention Systems (IPS) have a more 

extended operation by including prevention function when an intrusion is identified. Both IDS and IPS 

system exploit mechanisms for identify anomalies in the network traffic varying form pattern 

matching to advanced machine learning and deep learning techniques aiming to increase their 

detection accuracy. Machine learning methods and Deep Learning methods can automatically 

discover the essential differences between normal data and abnormal data with high accuracy. In 

addition, machine learning methods have strong generalizability, so they are also able to detect 

unknown attacks. Intrusion detection systems that can be trained using a baseline (i.e., normal system 

behavior), to identify anomalous events (e.g., behaviors differing from the baseline). This type of 
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anomaly IDS can also monitor network traffic and be trained to recognize malicious streams of packets 

based on known attack streams.   

For the communication between EnerMan’s edge/end node (acting as data aggregator) and the rest 

of the framework we consider deploying a lightweight IPS solution to provide a detection mechanism 

augmenting the total security posture of the offered solution.  

SNORT2 is a network-based intrusion detection system that is an open-source software than can be 

used as an IDS/IPS, as well as a real time network sniffer. Its basic usage can be as follows: 

● Sniffer Mode: to collect and printout TCP/IP network header information. 

● Packet Logging: to store network traffic packets that can be further analyzed later on (e.g., for 

forensic investigation). 

● Active Network intrusion detection mode:  to create alerts, when possible, intrusions are 

detected. 

The intrusion detection is based upon specific rules that have to be setup in snort deployment to 

match the used case needs. Each of those rules consists of two logical parts: 

● Rule header: contains the rule's action, protocol, source and destination IP addresses and 

netmasks, and the source and destination ports information. 

● Rule options: contains alert messages and information on which parts of the packet should 

be inspected to determine if the rule action should be taken. 

SNORT has the ability to detect probes or attacks, including, but not limited to, operating system 

fingerprinting attempts, semantic URL attacks, buffer overflows, server message block probes, and 

stealth port scans. SNORT rules use signatures to define attacks. These signatures are specifically 

designed to detect known exploits as they contain distinctive marks, such as ego strings, fixed offsets, 

debugging information, or any other unique marking that may or may not be related to actually 

exploiting a vulnerability. Snort will receive packets and process them through preprocessor and 

compare these packets against the set of rules. The output will log or trigger alerts based on what 

action the rules will take. An abstracted architecture of SNORT operation is given in Figure 18. 

 

Figure 18. Logical representation of SNORT architecture flow 

4.2.2. Cybersecurity Attack Prevention 

Secure Gateway  

The purpose of the secure gateway is to provide authorization and authentication mechanism to the 

data aggregator in order to be able to send the aggregated date to the EnerMan framework. A way to 

 
2 https://www.snort.org/ 



 

37 
 

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components 

do this is to add to REST services and request to REST APIs an authentication and authorization layer. 

The API authentication can be performed in three ways: 

1. Based on user credentials 

2. Based on tokens that are created by OAuth common flows. 

3. Based in certificates  

The first method is less secure where the third one required the creation and maintenance on 

certificate by a trusted certificate authority. Thus, for the EnerMan data aggregator need the second 

one seems to be more appropriate. 

OAuth 2.0 

OAuth 2.03 is a widely adopted and the industry standard protocol for authorization. Its specification 

and its extensions are being developed and maintained by the IETF OAuth Working Group. OAuth 2.0 

aims to provide a simple solution for client development while providing specific authorization flows 

for client applications such as web applications, desktop applications, mobile phones, wearables etc. 

and living room devices. It can enable a third-party application to obtain limited access to an HTTP 

service, either on behalf of a resource owner by orchestrating an approval interaction between the 

resource owner and the HTTP service, or by allowing the third-party application to obtain access on 

its own behalf. It should be noted that OAuth is able to provide authorization both in human to 

machine and machine to machine communications. 

OAuth2.0 specification describes four different roles: 

1. Resource owner: An entity capable of granting access to a protected resource. When the 

resource owner is a person, it is referred to as an end-user. 

2. Resource server: The server hosting the protected resources, capable of accepting and 

responding to protected resource requests using access tokens. 

3. Client: An application making protected resource requests on behalf of the resource owner 

and with its authorization. 

4. Authorization server: The server issuing access tokens to the client after successfully 

authenticating the resource owner and obtaining authorization 

The OAuth specification work defines a variety of grant types for different use cases such as 

Authorization Code, PKCE, Client Credentials, Device Code, Refresh Token 

 
3 https://oauth.net/2/ 
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Figure 19. OAuth authentication and authorization flow 

An OAuth2 flow is drafted in Figure 19. This flow describes the interaction between the four different 

defined roles in the specification:  

● The client requests authorization from the resource owner. 

● The client receives an authorization grant, which is a credential representing the resource 

owner's authorization, expressed using one of the four authorization grant types. 

● The client requests an access token by authenticating with the authorization server and 

presenting the authorization grant. 

● The authorization server authenticates the client and validates the authorization grant, and if 

valid, issues an access token. 

● The client requests the protected resource from the resource server and authenticates by 

presenting the access token. 

● The resource server validates the access token, and if valid, serves the request 

OpenID Connect  

OpenID Connect4 is an interoperable authentication protocol based on the OAuth 2.0 family of 

specifications. This protocol provides to clients a tool to verify their or the End-User’s identity based 

on the authentication performed by an Authorization Server, as well as to obtain basic profile 

information about the End-User in an interoperable and REST-like manner. It uses straightforward 

REST/JSON message flows. It allows developers to authenticate their users across websites and apps 

without having to own and manage password files. Also, it allows for clients of all types, including 

browser-based JavaScript and native mobile apps, to launch sign-in flows and receive verifiable 

 
4 https://openid.net/connect/ 
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assertions about the identity of signed-in users. OpenID Connect uses the ID token data structure that 

enable end-users or applications to be authenticated. The ID token has a JSON Web Token (JWT) 

format, which is a standard way to generate authentication tokens. The JWT contains various user 

information which are called claims. Also, it contains information about the validity of the token, such 

as issue datetime, expiry period etc. The token is normally signed by the token issuer with the issuer's 

public key to be easily verified using Public Key Infrastructure (PKI).  

Encryption 

The backbone of any security mechanism that prevents cybersecurity attacks as those are described 

in the beginning of section 4 is to enforce cryptography operations on the data that are stored or are 

in transit. Given that several cryptographic operations are computationally intensive and resource 

hungry (especial the Public Key cryptography operations), mechanisms to efficiently implement such 

operations are needed. For this reason, the full functionality of the EnerMan edge/end node execution 

environment is used that involves hardware reconfigurability. This is manifested by the 

implementation of specific cryptography/security operations as hardware IP cores in the FPGA fabric 

of the node MPSoC.  

The cyberattack prevention security mechanisms that are deployed on the EnerMan edge/end node 

(acting as data aggregator) are realized mostly using a hardware security token (HST) that is 

implemented on top of the EnerMan edge/end node execution environment. The overall structure of 

the HST can be seen in Figure 20. The HST is able to provide a series of security primitive services that 

include cryptography key generation for symmetric key and asymmetric key cryptography algorithms 

(like AES, CHACHA in various modes and Elliptic Curve cryptography) but also for quantum safe 

cryptography algorithms that will guarantee a high level of security even against quantum computer 

based cyberattacks. For the above algorithms the HST provides encryption and decryption capabilities 

as well as generation, signing and verification of digital signatures. Furthermore, the HST is able to 

securely store in special, protected storage structures sensitive security keys and also offer secure 

storage of pilot data. Apart from that the functionality of the HST can be linked with the detection 

mechanisms described in the previous subsections where the I2DS tool can act as a security 

sensor/agent for possible attacks on the HST itself or the pilot data collected by the EnerMan edge/end 

node. The HST also has an event logging mechanism that is capable of reporting to other security 

modules (e.g., the security gateway) security events that have being detected by the security 

sensors/agents. 

Finally, given the cryptography capabilities of the HST, the token can offer highly secure quantum safe 

TLS 1.3 functionality that can secure the transmission of data leaving the EnerMan edge/end node. 

This can be applicable in all the applications (the EnerMan software agents) that are currently been 

realized in the edge/end node including the federated learning realization (securely transmitting client 

local models to the federated learning server). 
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Figure 20 Hardware Security Token edge-node cryptography based cyberattack prevention setup  
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5. DEMONSTRATION REPORT  

5.1. Execution Environment Hardware accelerated application Demonstration  

To create and operate the hardware assisted EnerMan edge node execution environment on the Xilinx 

MPSoC edge board with an integrated FPGA fabric, we are using the Xilinx toolbox for designing and 

implementing functionality for the Processor System (PS) and the FPGA Programmable Logic (PL) of 

the Xilinx MPSoC. More specifically we are using the Xilnx Vitis toolbox (version 2021.1 and 2021.2). 

The developed EnerMan execution environment on the two used embedded system board (Xilinx 

ZCU104 and ULTRA96 boards) supports the PetaLinux OS and the ZoCL/Xilinx RunTime (XRT) drivers 

for deploying hardware accelerators in the PL but also the PYNQ python library (developed by Xilinx) 

that enables to deploy on the PL through python scripts (using the concept of PYNQ overlays).  

Initially, in this demonstration report, we show in detail the overall workflow that we used to create 

the relevant EnerMan execution environment to support the above functionality. After that, we show 

how the EnerMan execution environment can be used to deploy a custom hardware accelerated 

simple application (a matrix multiplication) through python using the PYNQ overlay capabilities of the 

platform Xilinx ZCU104. 

5.1.1. Platform Creation with Linux system 

The current flow consists of creating a platform project using Xilinx’s Vivado tool5, a tool that creates 

customized hardware to be deployed in the FPGA fabric of the Xilinx MPSoC chip, that contains all the 

hardware information required by the Vitis HLS tool. The next step is to setup the OS that will run on 

the specific embedded system based on the hardware information, in our case the PetaLinx OS. Finally, 

we import both inputs from Vivado and the OS setup into VITIS and develop our application and build 

the final solution. 

The output from VITIS contains the boot components, the .xclbin file containing the IP core and 

application executable that runs on the device’s CPU. We can then write these on an SD-card, boot up 

the embedded device and run the application, or if the SD-card is already setup, simply deploy the 

.xclbin file and the application executable on the device and run the application. 

What follows is a general flow to create a VITIS application as discussed previously. Appendix I provides 

a more detailed tutorial of the flow. 

Vivado project creation and. XSA export 

As discussed, our first step to build our platform for our application is to create a project in 

the Xilinx Vivado tool with our underlying hardware, connecting our peripherals and other 

basic components (e.g., AXI buses, interrupt controllers, platform interface etc.).  

We are using a Xilinx ZCU104 design from Xilinx for our hardware description6 and export the 

corresponding .XSA file which contains all needed information for our board, hardware, and 

 
5 https://www.xilinx.com/products/design-tools/vivado.html  
6 https://github.com/Xilinx/Vitis-Tutorials/tree/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104 

https://www.xilinx.com/products/design-tools/vivado.html
https://github.com/Xilinx/Vitis-Tutorials/tree/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104
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its internal connections. Xilinx provides specific automated TCL scripts that creates7 the design 

and export8 the generated XSA file. 

The output of Vivado that will be used in the following steps is the generated XSA file. 

PetaLinux project creation 

The next step is to setup the appropriate PetaLinux OS for the hardware design that we have 

generated. A PetaLinux-project can be created using the Xilinx tools.   

For this project we aim to create a Linux system which will contain also the PYNQ-overlay and 

all other components that are needed for a hardware accelerated application to run.  

At this stage, we must create a PetaLinux project and import the .XSA file generated by Vivado 

and designate the target device. After that we have to modify the root file system of the 

PetaLinux source files with all the necessary packages for XRT, PYNQ and any other required 

libraries. The last actions are the modifications of the kernel, updating the device tree based 

on the .XSA file and adding support for the EXT4 filesystem required for VITIS acceleration 

designs.  

Once everything is finished, we build the PetaLinux OS image and create a BIF file that 

describes all the boot components, which will be required by VITIS. 

Vitis platform creation 

We need to import now our platform into the Xilinx Vitis tool, to create an application based 

on our device with the Linux system we created.  

First we need to create a platform project using the .XSA and provide the necessary files from 

the PetaLinux OS we have created. After we can create a Vitis application on the Vitis platform  

In our demo we are using a Vitis-application example vector addition from the Xilinx template 

library, based on the platform we created. We built the application and got the boot 

components and .xclbin file and application executable.  

5.1.2. Python script to run 

In order to run our PYNQ-overlay in python we need to import Overlay and Xlnk from PYNQ 

library. Also we will need the setitem from Operator library and the numpy library, in order to 

import/export our inputs/outputs to and from the kernel. 

 

 
7 https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-

ZCU104/ref_files/step1_vivado/system_step1.tcl 
8 https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-
ZCU104/ref_files/step1_vivado/export_xsa.tcl 

 

https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/system_step1.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/system_step1.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/export_xsa.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/export_xsa.tcl
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Figure 21. Python code for executing the vadd application and IP core 

Initially we load in an Overlay object our .xclbin, then we can search for our IP in this object. 

After finding our IP, we need to load the specific IP (in our case krnl_vadd_1 IP). We can see 

in our terminal the output of our kernel’s register map: 

• CTRL signal which contains AXI-interface control signal 

◦ AP_START: setting to 1 initiates the kernel-execution, otherwise not 

◦ AP_DONE: if 1 indicates that the application is executed successfully (this signal is 

output for 1 clock period) 

◦ AP_IDLE: if 1 indicates that the kernel is not running, otherwise if 0 indicates that 

the kernel is still running 

◦ AP_READY: if 1 indicates that the kernel is ready to accept input, otherwise not 

◦ AUTO_RESTART: if 1 indicates that the kernel will re-run after the end of each 

execution, otherwise if 0 it will stall and wait for new AP_START =1 signal. 

• in1, in2: our stream-inputs to the kernel 
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• out_r: our stream-output from the kernel 

• size: the length of our inputs/outputs 

We can set the values of register_map object to our desired values. In our case size variable is 

set to N, which is the number of elements that we will insert into the AXI-stream inputs in1,in2 

and our output out_r . To do this we need to reserve continuous memory for our I/O. We can 

achieve this by using the allocate function, setting the number of elements N and the bit-

width of each elements (in our case 32-bit integers), which outputs an address that we will 

assign to our register-map elements in1,in2 and out_r . Then we can set the values on each 

allocation by using the setiitem function. 

After completing all the above we can start our kernel execution by setting the value of 

AP_START to 1. When AP_DONE signal gets to 1, this means our kernel execution has finished, 

and we can see the outputs on our terminal captures bellow. We can see that the vector 

addition has been completed successfully. First two array prints are our inputs in1 and in2 

respectively. The third one is our output array before execution. The last output array is our 

out_r array after execution, correctly adding in1 and in2 inputs. 

 

 

Figure 22. Terminal output of the register map 
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Figure 23. Terminal output of the final output of vadd 

 

5.2. Intelligent Data Processing Demonstration using software reconfiguration  

Edge devices can become the entry and disaggregated point of initial computation for data processing 

and harmonization. One probably issue that may arise is the specialized Operating System (OS) that 

these devices support such as PetaLinux, which does not support any package manager and is hard to 

support updated modules and libraries.  

One solution to alleviate this problem is to use Docker. Docker can create containers based on the 

device’s processor architecture, since Docker shares the kernel of the host machine and therefore not 

all images can be run and use any kind of OS such as Ubuntu that can be hosted on that processor. In 

such OSes package managers can be made use of to install all relevant libraries. Containers are also 
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lightweight can run on such devices and require only the necessary diskspace, memory and CPU 

resources. 

To this end, this demo showcases the use of Docker containers on an Ultra96v2 device that acts as the 

EnerMan intelligent node. The Ultra96v2 board (similarly to the Xilinx ZCU104 board that is used in 

the previous demo) hosts a Xilinx Zynq UltraScale+ MPSoC ZU3EG chip that has an A484 Arm processor 

with 2 GB (512M x32) LPDDR4 Memory and a 16 GB microSD card. We have performed this demo on 

the Ultra96v2 board that has deployed the full EnerMan edge node capabilities (as those are described 

in section 2 of this deliverable) and aim to demonstrate the usage of the EnerMan execution 

environment for edge intelligence processing on top of the PetaLinux OS. Using the Docker container 

capabilities for software flexibility we can elevate the various constrains of the PetaLinux OS and offer 

support for widely used python-based ML libraries (eg. PyTorch) 

 

Figure 24. The ULTRA96 Board that is used in this Demo 

The application to run on the Docker container is a small neural network (for more details see section 

3.2.8) comprised of 4 layers, two convolution layers and two fully connected layers written in Pytorch. 

The main concept is that we will have multiple Ultra96v2 (local clients) running, each training on a set 

of data (local data) that will be provided by the EnerMan pilots and updating its local model. After 

that, the results (updated models) of these training will be sent to a central server which will collect 

all the distributed neural network configurations and aggregate them into a global model. The above 

scenario forms the basis of the federated learning scheme that is described in section 3 of this 

deliverable (performing deep anomaly detection) where the server and the multiple Ultra96v2 work 

jointly without sharing local data. 

As our solutions are not currently part of a public Docker repository, we initially have to write a 

Dockerfile that will perform the building of the docker by downloading the relevant docker base OS 

and then perform a number of actions that will set up the container to be ready and compatible to 

run our application. The following code is the used Dockerfile: 
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#define base 
FROM ubuntu:20.04 
#Update and upgrade 
RUN apt-get update 
RUN apt-get dist-upgrade -y 
RUN apt-get install -y apt-utils git vim  
#Install python 
RUN apt-get install -y python3 python3-pip 
RUN pip3 install --upgrade pip 
RUN pip3 install pandas 
RUN pip3 install sklearn 
RUN pip3 install torch torchvision torchaudio torchtext torchcsprng -f 
https://torch.kmtea.eu/whl/stable.html 
 
#Create directory 
RUN mkdir /script 
#Set temp workdir 
WORKDIR /script/ 
#Get the files in the script folder 
COPY ./anomaly_detection_script.py /script/ 
COPY ./data.csv /script 

 

When building this container, the build process will pull the ubuntu 20.04 distribution, update and 

upgrade it and install all relevant libraries, such as python3, pip3 and using pip3 install all python 

modules required for the training of the neural network. Finally, this Dockerfile copies the python 

script and the relevant data for training. 

We start the build process by executing the following command in the same directory we have all the 

necessary files, the Dockerfile, the python script and the data: 

docker build -t nnedgetrain . 

 

The process begins by performing all the steps in the Dockerfile, such as the following images: 
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After the build has been completed the container can be started with the following command: 

docker run -it nnedgetrain /bin/bash 

This command will start up the container at the working directory defined in the Dockerfile and 

provide bash script. 
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We can now start up the training script and wait for it to finish. Since the Ultra96v2 does not have too 

much processing power, it takes some time to complete. 

 

 

5.3. AI Industrial Intrusion Detection Security Demo 

This section describes the main steps involved in the development of the MPSoC-hosted EnerMan 

intrusion detection mechanism, namely the Industrial Intrusion Detection System (I2DS). The process 

is based upon the FINN9 framework provided by Xilinx. The goal of the I2DS is to identify, in near real-

time, possible attacks in an industrial environment by using Machine-Learning (ML) based techniques. 

The overall development process described here has been an expansion on the original presented in 

[8]. 

5.3.1. Board set up 

For this demo we are using PYNQ, which is an open-source initiative that facilitates the use of Xilinx 

hardware devices, such as the EnerMan MPSoC. PYNQ offers and supports python productivity 

bootable images that can be used on a variety of Xilinx development boards, which host the Zynq 

MPSoC, e.g., PYNQ-Z1, PYNQ-Z2 and ZCU104. In addition, using the PYNQ python library we can deploy 

on the reconfigurable hardware of the MPSoC using python scripts. In this demo we use the ZCU104 

evaluation board. 

5.3.2. Set up the host 

The training phase is conducted on a host PC using the Xilinx FINN docker container with all the tools 

and libraries for training the target AI model. Xilinx provides jupyter notebooks within the docker for 

easier development. The host also needs Xilinx Vivado HLS installed, for the generation of the bitfile 

 
9 https://xilinx.github.io/finn/ 
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that will be downloaded into the reconfigurable part (Programmable Logic (PL)) of the MPSoC, that is 

linked with the docker container. To run the docker we just have to run on the host the command 

./run-docker.sh notebook. 

5.3.3. Train a quantized MLP with Brevitas 

Quantize the dataset 

The first step for a Quantized Neural Network (QNN) training is to binarize the dataset. In this demo 

we are using the TON_IoT modbus dataset created by the UNSW Sydney. This can be achieved with a 

python script called dataloader_quantized.py. This script drops irrelevant columns of the dataset such 

as date, time and the type of the attack and binarizes all the useful data for the training and keeps the 

label that shows if we have an attack or not for this data. With this dataset, for every input of four 

integers and one label, the dataloader creates 111 bits. The final quantized dataset is saved in a NumPy 

compressed format (.npz). This script also divides the dataset into training dataset (~80%) and test 

dataset (~20%). 

Define and train the QNN with Brevitas 

For the training phase we use the quantization-aware training (QAT) capabilities offered by Brevitas. 

Brevitas is a PyTorch research library for quantization-aware training. Our MLP has four fully 

connected (FC) layers in total: three hidden layers with 64 neurons, and a final output layer with a 

single output, all using 2-bit weights. We also use 2-bit quantized Rectified Linear Unit (ReLU) 

activation functions and apply batch normalization between each FC layer and its activation. The 

number of epochs is 15 and the learning rate 0.01. The notebook gives us post-training information 

about the training loss and test accuracy. The final test accuracy of the model is 0.912248. 

 

Figure 25. Training loss per iteration 
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Figure 26. Test accuracy per iteration 

Export ONNX model 

Before exporting, we can make some changes to our trained network (network surgery). In this case 

we are padding the input. Our input vectors are 111-bit. For easier parallelization of the first layer, we 

add a 0-valued column to work with an input size of 112 instead. The FINN compiler expects an ONNX 

model as input. ONNX is an open format built to represent machine learning models and the output 

of our model is presented below. 
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Figure 27. The exported ONNX model in Netron 

 

5.3.4. Import model into FINN and compare it with Brevitas execution 

The wrapper around the ONNX model provides several helper functions, so we can extract information 

about the structure and properties of the model. Before the comparison with the Brevitas execution, 

we need to prepare our FINN-ONNX model. With the Graph transformations in FINN we transform the 

model into a synthesizable hardware description. Finally, we can compare the two models by calling 

our inference helper functions for each input and comparing the outputs. 

5.3.5. Synthesis of the accelerator and generation of the bitfile 

In this step we use the FINN compiler to generate an FPGA accelerator with a streaming dataflow 

architecture from our QNN. With the use of the Vivado HLS we map all the layers of the model into 

hardware description. Hence, we create a hardware architecture with parallel layers that are 

connected with FIFOs to a full accelerator. Because the synthesis phase is time consuming, we always 

test our architecture rtl simulation. 
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Figure 28. The steps towards the bitfile generation 

 

Figure 29: Block design architecture in Vivado 

The final output of this process is the bitfile (and the accompanying .hwh file) that will be downloaded 

to the board. To test the accelerator on the board, we put a copy of the dataset and a premade python 

script that validates the accuracy into the driver folder, then make a zip archive of the whole 
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deployment folder. Finally, we send the zip folder to the board and run the commands below for 

testing our accelerator. 

unzip deploy-on-pynq.zip -d finn-I2DS-demo 

cd finn-I2DS-demo/driver 

sudo python3.6 -m pip install bitstring 

sudo python3.6 validate_TONIoT.py --batchsize 1000 

 

Figure 30. Terminal Output 
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6. CONCLUSION  

In this deliverable, the preliminary research, design, and implementation activities of T2.1 and T2.4 as 

well as some indicative applications of T2.2 have been presented. The execution environment of the 

EnerMan edge/end node is described and the overall architecture to support it is presented. Also, a 

series of demonstration scenarios have been provided showing how the execution environment can 

be used. Also, some indicative application activities that are been implemented on top of the EnerMan 

edge/end node execution environment are demonstrated. Currently, the work performed in WP2 is 

in progress and the reported activities in this deliverable are going to be enhanced and refined further 

till the close of the WP2 work in M18.  
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APPENDIX 1.    ENERMAN EXECUTION ENVIRONMENT CREATION WORKFLOW 

 

This appendix provides a detailed tutorial on how to create a VITIS application. 

Vivado project creation and. XSA export 

As discussed, our first step to build our platform for our application is to create a project in 

the Xilinx Vivado tool with our underlying hardware, connecting our peripherals and other 

basic components (e.g. AXI buses, interrupt controllers, platform interface etc.).  

We are using a Xilinx ZCU104 design from Xilinx for our hardware description10 and export the 

corresponding .XSA file which contains all needed information for our board, hardware and 

its internal connections. Xilinx provides specific automated TCL scripts that creates11 the 

design and export12 the generated XSA file. 

The output of Vivado that will be used in the following steps is the generated XSA file.  

PetaLinux project creation 

Next, we will need to setup the appropriate PetaLinux OS for the hardware design that we 

have generated. A PetaLinux-project can be created using the Xilinx tools.   

In this project we aim to create a Linux system which will contain PYNQ-overlay and all other 

components that are needed for a hardware accelerated application to run. At this stage, we 

do the following steps:  

1. Create the PetaLinux project based on zynqMP template. 
petalinux-create –type project –template zynqMP –name zcu104_custom_plnx  

2. Import .XSA file created via Vivado-project. 
petalinux-config –get-hw-description=<xsa_directory> 

3. Configure device tree with a template of zcu104 by selecting the DTG settings and 
modifying it to the device, in this case zcu104-revc. 

4. Modify our Root File System that originally includes the PetaLinux source files: 
a. Append the CONFIG_x lines below to the 

<your_petalinux_project_dir>/project-spec/meta-user/conf/user-
rootfsconfig file. 

I. Packages for base XRT support by appending  
` CONFIG_packagegroup-petalinux-xrt `: 

i. packagegroup-petalinux-xrt is required for Vitis acceleration 
flow. It includes XRT and ZOCL. 

ii. xrt-dev is required in 2020.1 even when we're not creating a 
development environment due to a known issue that a soft link 
required by the deployment environment is packaged into it. 
XRT 2020.2 fixes this issue. 

 
10 https://github.com/Xilinx/Vitis-Tutorials/tree/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104 
11 https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-

ZCU104/ref_files/step1_vivado/system_step1.tcl 
12 https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-

ZCU104/ref_files/step1_vivado/export_xsa.tcl 

 

https://github.com/Xilinx/Vitis-Tutorials/tree/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/system_step1.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/system_step1.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/export_xsa.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/export_xsa.tcl
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II. Packages for easy system management by appending 
` CONFIG_dnf 
  CONFIG_e2fsprogs-resize2fs 
  CONFIG_parted 
  CONFIG_resize-part ` 

i. dnf is for package package management  
ii. parted, e2fsprogs-resize2fs and resize-part can be used for ext4 

partition resize. 
III. Packages for PYNQ-overlay 

`CONFIG python3-pynq 
  CONFIG python3-audio 
  CONFIG python3-pillow 
  CONFIG pynq-overlay 
  CONFIG libstdc++ ` 

i. Python3pynq is need in order to import PYNQ libraries 
ii. Audio and pillow are dependencies for PYNQ library 
iii. PYNQ-overlay imports the device drivers for PYNQ-overlay 
iv. Libstdc++ is needed in order to OpenCL-applications 

b. Enable selected rootfs packages 
I. Run ` petalinux-config -c rootfs ` 

II. Select User Packages 
III. Select name of rootfs all the libraries listed above 

5. Modify kernel 
a. CPU IDLE would cause processors get into IDLE state (WFI) when the processor 

is not in use. When JTAG is connected, the hardware server on host machine 
talks to the processor regularly. If it talks to a processoring IDLE status, the 
system will hang because of incomplete AXI transactions. So, it is 
recommended to disable the CPU IDLE feature during project development 
phase. It can be re-enabled after the design has completed to save power in 
final products. 

I. Launch kernel config: ` petalinux-config -c kernel ` 

II. Ensure the following items are TURNED OFF by entering 'n' in the [ ] 
menu selection:  

III. CPU Power Management > CPU Idle > CPU idle PM support 
IV. CPU Power Management > CPU Frequency scaling > CPU Frequency 

scaling 
V. Exit and save. 

6. Update the Device tree: The device tree describes the hardware components of the 
system. Xilinx device tree generator (DTG) can generate the device tree according to 
hardware configurations from XSA file. User needs to add customization settings in 
system-user.dtsi for PetaLinux to consume if there are any settings not available in XSA, 
for example, any driver nodes that don't have a corresponding hardware, or if user 
need to override any DTG auto-generated configurations. 
ZOCL driver module is such a module that has no associated hardware, but it's required 
by Vitis acceleration flow. It's a part of Xilinx Runtime (XRT). We will add it to the 
system-user.dtsi. 
We will also override axi_intc_0's parameter interrupt inputs numbers from 0 to 32 
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because there was nothing connected to the interrupt controller in the XSA, but there 
will be after v++ links the kernel. 

a. Append the following contents to the project-spec/meta-user/recipes-
bsp/device-tree/files/system-user.dtsi file. 
 
`&amba { 

    zyxclmm_drm { 

        compatible = "xlnx,zocl"; 

        status = "okay"; 

        interrupt-parent = <&axi_intc_0>; 

        interrupts = <0  4>, <1  4>, <2  4>, <3  4>, 

                 <4  4>, <5  4>, <6  4>, <7  4>, 

                 <8  4>, <9  4>, <10 4>, <11 4>, 

                 <12 4>, <13 4>, <14 4>, <15 4>, 

                 <16 4>, <17 4>, <18 4>, <19 4>, 

                 <20 4>, <21 4>, <22 4>, <23 4>, 

                 <24 4>, <25 4>, <26 4>, <27 4>, 

                 <28 4>, <29 4>, <30 4>, <31 4>; 

    }; 

}; 

 

&axi_intc_0 { 

      xlnx,kind-of-intr = <0x0>; 

      xlnx,num-intr-inputs = <0x20>; 

}; 

 

&sdhci1 { 

      no-1-8-v; 

      disable-wp; 

};` 

• zyxclmm_drm node is required by Zocl driver. 

• axi_intc_0 node overrides interrupt inputs numbers from 0 to 32, set interrupt 
kind to level high. 

• sdhci1 node decreases SD Card speed for better card compatibility on ZCU104 
board. This only relates to ZCU104. It's not a part of Vitis acceleration platform 
requirements. 

 

7. Add EXT4 rootfs support 

 

It's recommended to use EXT4 for Vitis acceleration designs. PetaLinux uses initramfs 
format for rootfs by default, it can't retain the rootfs changes in run time. Initramfs 
keeps rootfs contents in DDR, which makes user useable DDR memory reduced. To 
make the root file system retain changes and to enable maximum usage of available 
DDR memory, we'll use EXT4 format for rootfs in second partition while keep the first 
partition FAT32 to store the boot files. 

 

Vitis-AI applications will install additional software packages. If user would like to run 
Vitis-AI applications, please use EXT4 rootfs. If in any case initramfs would be used, 
please add all Vitis-AI dependencies to initramfs. 
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1. Let PetaLinux generate EXT4 rootfs 
 

• Run `petalinux-config` 

• Go to Image Packaging Configuration 

• Select Root File System Type as EXT4 

• Append ext4 to Root File System Formats 

• Exit and save. 
 

2. Let Linux use EXT4 rootfs during boot 

 
The setting of which rootfs to use during boot is controlled by bootargs. We would 
change bootargs settings to allow Linux to boot from EXT4 partition. There are 
various ways to update bootargs. Please take either way below. 

• Run `petalinux-config` 

• Change DTG settings -> Kernel Bootargs -> generate boot args automatically 
to NO and update User Set Kernel Bootargs to  
 
`earlycon console=ttyPS0,115200 clk_ignore_unused 

root=/dev/mmcblk0p2 rw rootwait cma=512M. ` 

 

Click OK, exit thrice and save. 

3. Note: 

• root=/dev/mmcblk0p2 means to use second partition of SD card, which is 
the EXT4 partition. 

• Please note that we also set these options in bootargs:  
 

1. clk_ignore_unused: it tells Linux kernel don't turn off clocks if this 
clock is not used. It's useful clocks that only drives PL kernels because 
PL kernels are not represented in device tree. 

2. cma=512M: CMA is used to exchange data between PS and PL kernel. 
The size for CMA is determined by PL kernel requirements. 

8. Build PetaLinux Image 

a. From any directory within the PetaLinux project, build the PetaLinux project 

` petalinux-build ` 

 

The PetaLinux image files will be generated in /images/linux directory 

b. Create a sysroot self-installer for the target Linux system 

`petalinux-build --sdk ` 

 

The generated sysroot package sdk.sh will be located in images/Linux 

directory. We’ll extract it by running `sdk.sh` in a terminal and have a sysroot 

folder in images/Linux directory. 



 

61 
 

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components 

9. Create BIF (linux.bif) to describe boot components 
 

a. Add a BIF file (linux.bif) to the <full_pathname_to_zcu104_custom_pkg>/pfm/boot 
directory with the contents shown below. 

b. The file names should match the contents of the boot directory. The Vitis tool expands 
these pathnames relative to the sw directory of the platform at v++ link time or when 
generating an SD card. However, if the bootgen command is used directly to create a 
BOOT.BIN file from a BIF file, full pathnames in the BIF are necessary. Bootgen does 
not expand the names between the <> symbols. 

/* linux */ 

the_ROM_image: 

{ 

   [fsbl_config] a53_x64 

   [bootloader] <fsbl.elf> 

   [pmufw_image] <pmufw.elf> 

   [destination_device=pl] <bitstream> 

   [destination_cpu=a53-0, exception_level=el-3, trustzone] 

<bl31.elf> 

   [destination_cpu=a53-0, exception_level=el-2] <u-boot.elf> 

} 

 

Xilinx Vitis platform creation 

We need to import now our platform into Xilinx Vitis tool, in order to create an application based on 

our device with the Linux system we created. 

1. Create Platform Project on the Vitis tool and insert a name for our platform 
2. Create a new platform from hardware (XSA) and select the .XSA from Vivado project 

a. Select Operating system Linux 
b. Select Processor psu_cortexa53_0 
c. Select Architecture 64-bit 

3. In platform.spr select psu_cortexa53 linux on psu_cortexa53 
a. Bif File: BIF file we creater earlier 
b. Boot Components Directory: select /images/linux directory 
c. Linux Image Directory: select /images/linux directory 
d. Linux Rootfs: select rootfs.tar.gz in /images/linux directory 
e. Bootmode: SD 
d. Sysroot Directory: select the export of sdk.sh we run in previous steps 

4. Build platform, by right-click on the explorer on the platform we created and selecting Build 
Project 

Now if you create a Vitis application in the same workspace as this platform, you can find this platform 

available in the platform selection page in platform creation wizard. If you'd like to reuse this platform 

in another workspace, add its path to PLATFORM_REPO_PATHS environment variable before 

launching Vitis GUI, or use "Add" button in platform selection page of Vitis GUI to add its path. 

In our case we are using a Vitis-application example vector addition from the Xilinx template library, 

based on the platform we created. We build the application and get the boot components and .xclbin 

file and application executable.  

To create our bootable SD-card, we need two partitions 

1. BOOT partition (approximate 4MB), copy the files 
a. BOOT.BIN 
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b. boot.scr 
c. image.ub 
d. .xclbin and application executable 

2. Rootfs partition (rest space of SD card). Write the rootfs files into the SD-card rootfs-
partition: 
` sudo tar -zxvf rootfs.tar.gz -C /media/rootfs/ 
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