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EXECUTIVE SUMMARY

This deliverable is focused on the preliminary activities of WP2 and especially in the activities of Task
2.1 (T2.1) and Task 2.4 (T2.4). Initially we provide an introduction of the overall approach in the WP2
and then in section 2 we present the analysis on Execution Environment of the EnerMan edge/end
node along with the node’s architecture that supports such an environment. Afterwards, in section 3
the preliminary applications that have been developed in WP2 as those have been prescribed in Task
2.2 are being briefly presented however, we do not provide thorough analysis on them since there is
a dedicated deliverable on T2.2 on M18. Similarly, we do not deliberate on the activities of T2.3 since
there is a dedicated deliverable report on M18 for that task. In section 4 we focus our analysis explicitly
on the security aspects that are linked with the EnerMan edge layer based on the activities of Task
2.4. Finally, in Section 5 we demonstrate the usage of the EnerMan execution environment for various
scenarios and showcase how some applications described in Section 3 and Section 4 are implemented
in action. The deliverable is concluded with an appendix that presented the custom design flow that
was used in order to create the EnerMan execution environment on the edge/end node that is
implemented on a Xilinx MPSoC device.
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1. INTRODUCTION

The second work package of the EnerMan project is focused on the data collection and data processing
at the end devices and edge level of the EnerMan framework. This means that in this WP we are going
to research, design and implement all the relevant components of the EnerMan data collection and
Control plane on the edge of the industrial manufacturing infrastructure. Also, we are going to create
the necessary computing and execution environment that will allow the appropriate deployment,
execution, and efficient operation of such components. Our goal in this WP is to create an EnerMan
intelligent Cyber-Physical System (CPS) end node that will act as an end device or/and as a data
aggregator for a series of in-field devices (machines) within the industrial environment. Apart from
simple data collection, the EnerMan node should be able to perform intelligent operations that can
support specialized industrial functionalities (e.g., Predictive maintenance or intelligent temperature
measurement or energy consumption local data predictions) to pre-process and fine-tune data that
are going to be forwarded to the EnerMan system layer (as a private or a public cloud big data analytics
engine etc.). We adopt, as an execution environment, embedded system solutions that have Multiple
Processor System on Chips with dedicated FPGA fabric that can offer custom to our needs hardware
acceleration and hardware level (programmable logic) reconfiguration, to support flexibility in the
execution of the various end/edge node operations and also to offer a high level of efficiency. Apart
from the above, in WP2 we also considered the need for an edge device-based control loop
mechanism that will collect the needed configuration from the EnerMan system layer (e.g., from the
intelligent Decision Support System, iDSS) and forward it to the factory automation processes (e.g.,
PLCs or other control (actuation) devices). Given that reconfiguration is also supported by the
EnerMan edge node (software and hardware based) the control loop should also be able to offer
control of the EnerMan edge node functionality and how such functionality can be reconfigured over
time (during operation) according to the EnerMan platform suggestions.

Following the Description of Action (DoA) in the General Assembly of the EnerMan project, the WP2
is meant to provide the necessary execution environment for performing data collection and
processing at the edge of the industrial infrastructure so that we can deploy in such an environment
the EnerMan software agents aiming to do holistic data processing using diverse sensing modalities
for specific industrial functions as those are specified by the EnerMan user requirements. Of course,
goal of WP2 is also to create such software agents (envisioned as small software programs executed
in the EnerMan execution environment). Apart from those actions in WP2 we are designing and
implementing the edge lloT level support mechanism for the EnerMan flexible control loop and
protect the overall data collection mechanism against security and privacy breaches using dedicated
security operations aiming to act as proactive (to prevent security breaches) and reactive (to detect
security attacks) measures.

As can be seen in Figure 1 the WP2 designed and developed edge node is going to act as an EnerMan
intelligent CPS node that will collect sensor data and as a data aggregator that will harmonize and
preprocess such data to be ready for the big data analysis performed at the cloud level of the EnerMan
architecture. During the initial user requirements and architecture requirements phase of the
EnerMan project (performed in WP1) it became apparent that the two roles can be merged into a
unified CPS component (the EnerMan intelligent node) that can include both roles originally described
in the DoA document (i.e., data collection/aggregation, data harmonization and preprocessing).

10
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Figure 1. Initial EnerMan Data Aggregator architecture

The data that we currently consider at the edge level (either raw data or data after preprocessing) can
be the following

= Machine energy consumption

=  Multiple sensory data (temperature, pressure, humidity, etc.) from existing pilot deployed
sensors

= Machine functionality status for predictive maintenance (machine faulty state)

The above activities of WP2 span in 4 tasks (Task 2.1 to Task2.4). Task 2.1 is focused on setting up the
appropriate execution environment and the research and development of how to efficiently deploy
the Edge node intelligence and security functionality into the execution environment. Task 2.2 is
focused on the design and development of the appropriate intelligence algorithms (Machine Learning
based) to be deployed in the EnerMan intelligent edge node. Task 2.3 is about the realization of the
EnerMan control loop and the reconfigurability that is supported by the EnerMan architecture. Task
2.4 is about the establishment of all the data security functionality that will prevent security breaches
of the collected, processed, and transmitted data from the edge node to the EnerMan cloud solutions.
Given that according to the EnerMan workplan there are dedicated deliverables for Task 2.2 and Task
2.3, in the deliverable (D2.1) we report the preliminary activities of Task 2.1 and Task 2.4. We also
provide a brief description of the Task 2.2 activities (that are currently in progress) since those are
linked with the Task 2.1 activities and the structures that are implemented there.

Thus, in this deliverable, we focus on the activities that are in progress till Month 14 of the project
(note that WP2 and the relevant tasks are concluded in M18). These activities are:

e The research, design, and development of the appropriate execution environment in the
EnerMan CPS intelligent edge node
e The capabilities that this execution environment can provide at the current state of the project

e The algorithms that are currently designed and under deployment in the created execution
environment

e The security functionality that such an environment can currently support

Finally, in the deliverable, we provide in a tutorial-like fashion the workflow to be followed to deploy
an application on the developed execution environment including hardware
acceleration/reconfiguration support.

11
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2. ENERMAN END NODES/EDGE ARCHITECTURE AND EXECUTION
ENVIRONMENT

2.1. Overall Execution environment Concept

One of the fundamental activities of WP2 (reflected in T2.1) is to design the appropriate execution
environment for the EnerMan end nodes and data aggregators that will enable the easy deployment
and usage of the EnerMan edge intelligence as well as the control loop reconfiguration (designed in
T2.2 and T2.3). Given that we are aiming to provide highly efficient data processing at the edge as well
as the maximum possible reconfiguration, it is imperative that we structure the execution
environment to include mechanisms that will be able to offer such services.

In general, the execution environment of the EnerMan end/edge node should include several
components that will allow the hardware and software support of the EnerMan edge functionality.
Given that the EnerMan project aims at providing reconfiguration of the EnerMan edge functionality,
the EnerMan execution environment should also be able to support such service at the hardware level
(using FPGA programmable logic) and at the software level. Thus, before actually deploying specific
algorithms (as those are specified in T2.2) we need to provide an execution environment that can
allow the easy deployment, configuration and reconfiguration of such algorithms in hardware and in
software. The EnerMan software agents, which constitute, the operations to be executed in the
EnerMan end/edge nodes will rely exclusively on the capabilities of such execution environment.

2.2. Edge/End Node Architecture Enabling the Execution Environment

We envision the EnerMan intelligent Edge node as a heterogenous embedded system device that can
perform multiple activities within the manufacturing infrastructure in an efficient manner. This edge
device should be able to collect the data that are provided to it by the various sensors existing inside
the industrial domain, harmonize those data in order to be compatible with the data expectations
required by the EnerMan big data analytics engine and in parallel also process those data so as to offer
the EnerMan platform as well as the operator appropriate information that will help them make
informed decisions on the optimal energy sustainability options. This indicate that the Data collection
and Processing should be manifested in the EnerMan intelligent edge node with various ways and in
an efficient manner. Furthermore, the node should be versatile enough to offer a broad range of
services that may vary from time to time and from industry to industry. This highlights, apart from
high efficiency, the need for flexibility in the offered operations of the node. To keep efficiency at high
level regardless of the configuration of the EnerMan edge node we opt for support of reconfigurability
both in hardware and software. This gives the ability to change, at a reasonable degree, the
functionality of the EnerMan intelligent edge node with respect to the underlined industry needs
without having to redesign/remanufacture the node itself. In practice, this means that the execution
environment of the EnerMan intelligent edge node should be able to handle such reconfigurability
and efficiency features. From a hardware perspective, we consider as a best match to the above
requirements, the use of MultiProcessor System on Chip (MPSoC) embedded system devices that can
host in its core, multiple processors (usually multicore processors) to achieve efficiency but also
specialized hardware components for specific applications (e.g., Graphic Processing Units (GPU) or
real time processors). To further support hardware reconfigurability, we consider embedded system
MPSoCs that fathom in their SoC architecture, reconfigurable hardware programmable logic in the
form of an FPGA fabric. The latest FPGA manufacturer solutions are more than capable of supporting
the above-described setup. In EnerMan we opt for Xilinx manufacturer devices focusing on the Xilinx
Zynq Ultrascale+ MPSoC design as this is realized in two low-end, low-cost embedded system boards
i.e., the Xilinx ZCU 104 or 102 development board and the Avnet ULTRA96 development board. The

12
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advantage of such development boards is that they can be used both as means for prototyping as well
as in the context of the actual final implementation of the EnerMan intelligent edge node.

In Figure 2 the overall architecture and concept of the EnerMan intelligent Edge node is presented.
The node will accept and process data from the distributed sensors using a platform that operates
both in the software and hardware domains. These data are processed by the MPSoC unit that runs a
Linux-based OS, i.e., PetaLinux, on its software side and uses its PL to implement specific types of IP
cores, i.e., functional modules, with optimized processing and energy consumption metrics, on its
hardware side. Naturally, the OS is equipped with all the necessary firmware for software to hardware
communication provided by the Xilinx Runtime (XRT) library that accompanies the embedded OS
distribution. On top of the 0S, however, we have implemented and configured additional
reconfigurability/flexibility features to support the EnerMan node requirements. To achieve software
reconfigurability we introduce in the execution environment Docker based containerization, i.e.,
Docker containers, that will allow for the introduction to the node, input from the other EnerMan
planes such as the Management plane as well as support of functionality that cannot be offered by
the Xilinx supported PetaLinux OS. In other words, the data collection and control plane, will support
an interactive relationship between itself and the other EnerMan framework components such as the
other planes as well as the sensors and actuators.

Furthermore, given that many Machine Learning and Deep Learning core software libraries are
implemented in the python programming language, in the EnerMan execution environment we
integrate the PYNQ python library offered by the Xilinx tool into the Petalinux OS environment as an
alternative mechanism of supporting hardware (FPGA PL) reconfiguration. Note, that existing Xilinx
solutions offer hardware reconfiguration through Petalinux either using the native Xilinx runtime
(XRT) or using PYNQ python Jupyter notebooks, not both. We have managed to employ both such
approaches in the EnerMan edge/end node execution environment. Beyond that, we have managed
on top the above two hardware reconfiguration approaches, software reconfiguration through Docker
containers.

As shown in Figure 2 the EnerMan edge/end node architecture consists of 4 different layers. The first
layer, hardware layer, includes the FPGA fabric (the programmable logic) on which using the EnerMan
execution environment capabilities (through the XRT or the PYNQ python library) we can deploy the
hardware part (the designed IP Cores) of an EnerMan application (as will be demonstrated in section
5 of this deliverable). Above the hardware layer, there is the processor layer that is executing the
software part of an EnerMan application (e.g., the EnerMan software agents). The EnerMan
applications themselves are deployed using the Petalinux OS environment that constitute the OS layer
of the EnerMan edge/end node. On top of this layer, we have built the overall EnerMan execution
environment functionality that as mentioned in the previous paragraphs includes the Docker
container support and the PYNQ library support that has been adapted to be used in parallel with the
XRT environment. The above capabilities rely on the EnerMan application backbone that includes the
necessary core, backend, functionality to enable the described execution environment. Finally, this
application layer, includes the necessary software functionality to securely transmit the collected data
or relevant extracted data using the TLS1.3 protocol that is enhanced with quantum — safe security
capabilities to support long lasting and strong security.

13
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Figure 2. The implementation setup for the Data Collection and Control Plane

To fully employ the efficient execution of an algorithm of the EnerMan software agent (in the form of
an executable application) we follow the process shown in the lower left side of Figure 1. At design
time we obtain the algorithm software implementation and place is in a controlled environment
where we use various computation profiling tools like control flow graph analyzers showing the
dependence between functions of the algorithmic implementation and their time delay or flame
graphs showing the memory usage and memory depth of such function during execution. The goal is
to identify computationally demanding or slow execution functions (or software code in general) and
following a crude hardware /software partitioning reassign the execution of such functions on
dedicated hardware Intellectual Property (IP) Cores that are deployed within the EnerMan edge node
execution environment.

2.3. Conceptual Usage of the EnerMan edge/end node Execution Environment

The EnerMan edge node and its execution environment is used in accordance with the overall
EnerMan framework/platform as shown in Figure 3. The EnerMan edge/end node collects input from
the pilots in the form of datasets (the format varies from pilot to pilot), processes that input and
forwards the result to the system layer of the EnerMan framework (deployed in public or private
cloud). Typically, the consumer of the EnerMan edge/end node results is the EnerMan Big Data
Analytics Engine. Also, the EnerMan edge/end node is acting as an enabler of control configurations
that stem from the EnerMan intelligent Decision Support System (iDSS) by forwarding those
configurations to the pilot site infrastructure. In practice, given the EnerMan pilot site constrains (and
not to disturb the actual factory production lines/process) the actuation configuration is forwarded to
the Factory human personnel for evaluation (acting as suggestions).

Most importantly in Figure 3, the currently identified preprocessing applications (acting as the
EnerMan edge/end node software agents) are being shown and their interaction with the overall
EnerMan framework is briefly presented. Typically, each pilot collects data from the in-field sensors
deployed in the factory and stores them in some data collection point. The EnerMan edge node acting
as data aggregator interacts with that collection point and consumes such data by initially transferring
them (in a synchronous or asynchronous way depending on the pilot needs) to edge node storage
area and then harmonizing them using a data harmonization component. This component’s goal is to
prepare the pilot data in order to be fit for the EnerMan platform, mainly for the EnerMan big data
analytic engine. The EnerMan edge node data harmonizer produces datasets that can be either
directly forwarded to the Big Data analytics Engine or can be further preprocessed within the EnerMan
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edge/end node. The preprocessing performed at the edge is associated with specific ML/DL based
operation that follow the federated learning model. Each EnerMan edge/end node in such case acts
as a client of an Al federation that has a local ML/DL model. This local model is trained using the data
that are provided locally to each EnerMan edge/end node and when data classification is made the
accuracy of the results is limited due to the volume and quality of this local dataset. However, to
improve the overall classification (or even prediction) accuracy periodically the client local models are
forwarded to a Federated Learning central server that compose the local models into a Federated
global model that can provide considerably more accurate classification compared to single local
models. The global model is then shared with all clients thus updating their local models and the
training process resumes while classification is taking place. The overall process is further analyzed in
section 3 where we also describe a demonstration of the approach for machine health status
classification (in the overall concept of predictive maintenance) as part of a Deep Anomaly Detection
classification concept.

Fedefated

Learning

C|0 u d Approach
(Federated

(big data analytics) Global models)

DL/ML
functionality
WP2 Data
collector/
AggregatorfelZailiis /4
privacy

Manually
provide
data

Pilots

- Operators

-y

Figure 3 Conceptual usage of EnerMan edge node and interaction with the remaining EnerMan framework

Apart from the processing of datasets from pilot’s sensors, the EnerMan edge/end node can also
process data that are collected for specific reasons from sensors of the edge/end node itself. Infrared
thermal camera images or videos from the manufacturing space is a good candidate for the
capabilities of the EnerMan execution environment. Using such data, we can infer the Mean Radiant
Temperature distribution on a given industrial manufacturing space and eventually visualize this
information in the EnerMan visualization framework.

Notably, the harmonized data as well as the data produced after preprocessing at the edge are
transmitted to the rest of the EnerMan framework securely. Furthermore, we also make sure that the

15
This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 958478




Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

EnerMan edge/end node is protected against security attacks that can potentially maliciously modify
(or poison) the data processed within the EnerMan edge/end node. In general, the EnerMan execution
environment is supporting several security services focusing on cyberattack prevention and detection.
More information on the EnerMan edge/end node security is provided in section 4 of this deliverable.

Finally, the EnerMan execution environment can handle control-configurations that are provided by
the EnerMan iDSS. This activity is out of scope for this deliverable and will be analyzed in detail in the
dedicated deliverable for T2.3 (i.e., Deliverable 2.4)
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3. DATA PROCESSING AND ASSISTED INTELLIGENCE

3.1. Data Harmonization

Data harmonization describes the preparation of raw data originating from various sources with the
goal to provide a more standardized and uniform data representation. It is an important stage in a
data preparation pipeline since the raw data are produced in custom formats which are diverse and
pose a challenge for the application of more advanced preprocessing technics (e.g., interpolation,
resampling, clustering). The harmonization can be achieved by identifying similarities in the various
data sets, retaining critical requirements, and generating a common standard. Data quality checks are
also critical at this stage to ensure the data integrity and validity before data features are propagated
to the next stage of preprocessing.

3.1.1. The role of data harmonization in EnerMan

Data harmonization as a component of the EnerMan platform aims to bridge data collection
requirements between the edge node and the cloud infrastructure, addressed in WP2 and WP3
respectively. As demonstrated in Figure 4, data collection begins at the end-user’s premises (Figure 4:
A), with customized representations built internally to serve the needs of the organization (different
PLCs or recorders). Subsequently, EnerMan edge nodes apply the harmonization pipelines (Figure 4:
B) that ensure that the data stored in the cloud infrastructure (Figure 4: C) have an aligned
representation that will allow to process them with more generic methodologies across pilots and use
cases. Thus, the data harmonization component facilitates the data collection between the end users
and the Big Data Analytics Engine (BDAE) in the cloud (WP3-T3.1), by implementing a data pipeline
from raw data provided by the use cases to structured time-series data, available for downstream
tasks.

(B)

T2.1

Figure 4 EnerMan data collection stages: (A) use-case, (B) WP2-T2.1 (edge), (C) WP3-T3.1 (cloud)

3.1.2. Data harmonization targets

In this section we will discuss some concrete data aspects from the EnerMan raw datasets that the
data harmonization component aims to transform into a uniform representation across use cases.

File formats: Raw datasets are provided in diverse formats, e.g., .xIsx, .csv. Moreover, .xIsx files often
consist of multiple sheets corresponding to various aspects of the same use case and process (e.g.,
same measurement with different time aggregation). The harmonization task aims to convert the files
into a uniform format suitable for modelling frameworks and database ingestion processes (.csv or
.parquet depending on the batch sizes).

Data Schema: Attributes’ names are often defined in forms that are not suitable for big data
processing, e.g., they contain spaces, are split in multi-raw header or are not in English. Furthermore,
the data schema is not always readily transferable to a tabular format since there might be multiple
headers to a single sheet or merged cells might occur.
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Missing data indication: Missing value indications vary across use cases and organizations, e.g., empty
cell, null, ‘0’ or ‘N/A’, ‘NaN’ etc. Data harmonization must detect all these different representations
and transform them into a uniform type, recognizable from a programming point of view.

Measurement units: Units are not always explicitly indicated. In case a data set has the same type of
measurement (for example temperature) the harmonization layer needs to ensure that the unit of
measurements is always the same (e.g., Celsius).

Timestamps: Another source of variation is related to the time zone of the timestamps of each
measurement. It is not always evident whether the initial data collection used the local time zone or
Coordinated Universal Time (UTC). Furthermore, organizations, use cases and processes utilize diverse
timestamp formats (depending on their PLC or recording configurations), or even separate date and
time columns breaking the timestamp in two parts. The harmonization pipelines need to change these
dates into the same time zone and in unique format to improve data usability and integrity.

Metadata information: Raw datasets are not accompanied by metadata information that would be
necessary for advanced preprocessing and analytics in the cloud. Examples of such information are
the expected datatypes for each measurement, min-max limits or descriptive statistics for numerical
values, expected classes for categorical values, expected granularity or sampling rate, localization,
measurement type (e.g., sensor, actuator), how should missing values be interpreted for a particular
measurement and if they should be acceptable.

206 23-Jul - = - P_TANK_RE | P_TANK_RE
207 24-Jul - _ _ date AL[kw] AL [kw)

Date Time
208 25-Jul - - - type of test

209 26-Jul - - - [Tii020210628 |  2/12/2019 0:00
210 27-Jul 301.74 872.12 1,173.86
211 28-Jul 527.01 1,639.77 2,166.78
212 29-Jul 500.36 1,675.94 2,176.30
» EnPi | 2020 Data Hourly = 2020 Data Daily | 2020 Data Weekly Daily Variables | Weekly Variables

) . 2 [29/01/201911:45 | 2130 | 2180 NaN NaN

2 02/12/2019' 00:00 3 |20/01/201912:00 2150 @ 2180 NaN NaN

: 4 |29/01/201912:15 2150  21.90 NaN NaN

3 | 02/12/2019 00:01 0.00 0.00 5 [20/01/201912:30 2120 2200 NaN NaN

4 02/12/2019 00:02 0.00 0.00 6 [29/01/2019 12:45 21.00 22.00 NaN NaN

7 |29/01/2019 13:00 21.00 22.10 NaN NaN

5 | 02/12/2019 00:03 0.00 0.00 8 |29/01/201913:15 2100 = 2220 NaN NaN

Figure 5 Examples of data representation inconsistencies that need to be addressed by the data harmonization component.
Multiple sheets with different granularity of the same measurements, different indications for missing values, diverse
timestamps format, date and time split in different columns.

3.1.3. Technical implementation

Data Harmonization is implemented as a python package which can be integrated to the EnerMan at
the edge node’s Data Aggregator and is configured to communicate with the Big Data Analytics Engine
(WP3-T3.1). A higher-level depiction of the architecture is presented in Figure 6. The main components
of the Data Harmonization package are the following: dedicated harmonizers for each use case, a data
loader class, a library of harmonization utilities, and a library for data quality checks.
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f \ Big Data Analytics Engine [CLOUD]
Unstructured harmonized UC data

Data Harmonization l
P . . UC Data Model ‘
Harmonization utils UC harmonizer ‘ Data Models | NoSQL DB

Data quality checks Dataloader

UC Raw
data batch

Config
Data Aggregator [EDGE] : .

Figure 6 The data harmonization modules are integrated in the Data Aggregator edge node and communicate with the Big
Data Analytics Engine in the cloud.

Data harmonization at the edge level is necessary as described in Section 3.1.1 to support the Big Data
Analytics Engine, a centralized EnerMan component that is responsible for handling advanced
preprocessing tasks. The data harmonization package is designed to be a lightweight solution adapted
to the use case specific characteristics and separated from the cloud infrastructure which involves
processes that require data that have been previously standardized. This setup enhances modularity
of the EnerMan solution and a balance between specialization and generalization, addressed at the
edge and in the cloud, respectively.

More concretely, the communication entails fetching the use case specific Data Model from the Big
Data Analytics Engine to the edge, and in the other direction, transferring the harmonized datasets to
the cloud. Data Model prototypes are designed and developed in WP3-T3.1 (a centralized approach is
taken since they are expected to be used also from downstream tasks that only communicate with
the Big Data Analytics Engine). A preliminary form of a Data Model is depicted in Figure 7.
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Figure 7. Preliminary Data Model sample

The components of the harmonization package are the following:

calculated”

Harmonizers: A python class designed for each use case’s data profile. It takes a use case specific Data
Model as an argument and provides methods for loading the data, preprocessing it with the
harmonization functions that correspond to the specific use case, and applying the quality checks on
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the harmonized data. The Data Model contains information to be used by the class methods, e.g., the
expected feature names, data types, localization information.

Data loader: A python class which is called from the harmonizers and handles the loading of the data.
It provides methods to enable loading different data formats.

Harmonization utilities: A library of preprocessing functions to harmonize the data. For example,
there are functions to replace the missing data indication with a standardized form, to transform local
timestamps to UTC+00 and datetime formats to 1ISO 8601 (yyyy-MM-dd'T'HH:mm:ssZ). It also provides
functions to transform attributes’ names and data types according to a given list provided by the
Harmonizer class as described in the Data Model.

Data quality checks: A library which contains functions to run basic data quality checks. For example,
functions that examine whether the data schema matches the Data Model schema, the data types are
the expected ones, min and max values whenever defined are not exceeded.

The final harmonized datasets are stored in an unstructured database in the cloud where they are
further preprocessed in the final layer of preprocessing (WP3-T3.1) to derive time-series data.

3.2. Federated Learning Based Machine Status Detection

3.2.1. Federated Learning Introduction

Traditional distributed deep learning approaches demand a large amount of private data to be
processed and aggregated at central servers during the model training stage by employing some
suitable distributed optimization algorithm. However, this distributed process suffers potential data
privacy leakage issues. On the other hand, federated learning (FL) has been emerging as a promising
approach for decentralized model training focusing on the data privacy aspect of the problem. In
particular, it allows the clients to train and acquire an accurate globally trained model without sharing
any private data with other users.

The scope of the federated learning scheme is to obtain a global model, say 8 (Eq. (2)) that can
minimize some aggregated local function £, (%) (Eq. (1)), where x denotes the data feature, y is the
data label, n is the local data size, n = Z;?gi ny is the total number of sample pairs, C stands for the
participation ratio assuming that not all local clients participate in each round of model updates and

k is the client index.

fie®") = - E*loss(x yi:6%) (1)
CxKn

minf(6) = > "L f,(6%) @
k=1

Federated learning can be divided into two major categories, namely the horizontal and vertical FL
based on the characteristics of data distribution across the participants [1]. In this study, we focus on
the horizontal federating learning scheme.

3.2.2. Horizontal Federated Learning

Horizon FL or homogeneous FL relates the case where the local training data of clients share the same
feature space but have different sample space. Figure 1 exemplifies this scenario, where client 1 and
client 2 share the same personal features (feature space) but they contain data for different persons.
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Features
Name Age Sex Height ‘Weight Label

Person A 24 Male 178 78 1

Person B 61 Female 165 64 0 " Client 1
Person C 44 Male 182 89 1 |

Samples -

Person D 17 Female 159 52 0 ‘

Person E 1 Male 137 36 1 -Client 2
Person F 33 Female 171 60 0 ‘

Figure 8. A demonstration of data partition in horizontal federated learning. In this example the two clients contain five
personal features, namely name, age, sex, height and weight. However, each client has data for different persons.

The FedAvg algorithm [2] is a typical case of the horizontal FL providing an efficient methodology to
train a global model without sharing any client’s data. In more details, the global model, say 8 and the
local models 8, share the same deep learning architecture with different model parameter values,
since each local model is independently optimized based on its local data. After the local training, the
models are uploaded to the server. Considering that all local models have the same structure, the
server aggregates the local models and generates the corresponding global model 8. Algorithm 1
summarizes the FedAvg approach.

I: Server:

2: Initialize global model 8,

3: for each communication roundr = 1,2,...T do
4 Select m = C x K clients, where C € (0, 1)
5: for each Client k = 1.2, ...m in parallel do
6: Download 8, to Client k

T Do Client k update and receive o

8: end for ”

9:  Update global model 8, — ¥ ’%9“

k=1

10: end for

12: Client k update:

13: Replace local model 0F « 6,
14: for local epoch from 1 to E do
15: for batch b € (1. B) do

16: 0% — 6% — gV L, (0%, b)
17: end for

18: end for

19: Return #*

Algorithm 1. FedAvg. K is the total number of clients; B is the size of mini-batches, T is the total number of communication
rounds, E is the local training epochs, and n is the learning rate.

3.2.3. Federated learning on non-1ID Data

Horizontal federated learning approaches, such as FedAvg algorithm exhibit satisfactory performance
on Independent and Identically Distributed (lID) data. FL methods depend on stochastic gradient
descent, which is widely employed for training deep learning models achieving good empirical results.
The 11D sampling of the training data is pivotal to guarantee that the stochastic gradient is an unbiased
estimate of the full gradient. However, in real world settings and applications usually the local data of
each client is not 1ID. Non-IID data heavily affect the performance of the horizontal FL models, since
the local data distributions are different from the global data distribution, thus the averaged local
model parameters may diverge from the global model parameters. In literature there is a plethora of
studies that aim to address the challenges that non-IID data impose [1], [3], [4].
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3.2.4. Personalization layer approaches

Different from the FedAvg approach, in this case each client is allowed to contain some personalized
layers in the deep learning models focused on the local data distribution of the clients. Figure 9
illustrates an example of these networks, where each client model comprises of personalization layers
(filled blocks) and base layers. It should be highlighted that only the base layers are uploaded to server
for the global model aggregation, thus significantly reducing the communication costs, since only the
base layers need to be uploaded to server.

FedPer algorithm [3] constitutes a characteristic case of these approaches. Particularly, in the FedPer
model the base layers are shallow neural networks focused on capturing high-level representations of
the local data and the personalization layers are deep neural networks aiming to tackle the
classification problems. Algorithm 2 summarizes this method.

Personalization
layer

Clients

Figure 9. An illustration of horizontal FL with personalization layers. Only the base layers (filled blocks) are uploaded to
server for the global model aggregation

1: Server:

2: Initialize the shared base model 02

3: Initialize personalization layers ()‘I’,A

4: for each communication round 7 = 1,2, ...T do
5: Select m = C x K clients, where C € (0, 1)
6: for each Client kK = 1,2, ...m in parallel do

7: Download 6}, to Client k

8: Do Client k update and receive ()2

9: end for "

10: Update base model 6}, — kzl "’—:92

11: end for

12:

13: Client k update:

14: Merge base model 6 and personalization layers 6,
15: for local epoch from 1 to E do

16: for batch b € (1, B) do

17: (0%.0p,) < (05.0p) —nVL(0p5.0p,:b)
18: end for

19: end for

20: Return 6%

Algorithm 2. FedPer
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3.2.5. Clustering based approaches

Considering the highly non-IID distribution of the clients’ data, instead of having only one global
model, a client clustering method is proposed to develop a multi-center system by clustering the
clients into different clusters. By creating multiple global models this FL framework is able to capture
the heterogeneous data distribution of the clients. Nevertheless, note that the data distribution of
each user is private. Thus, a clustering methodology is developed that performs the clustering of the
users based on the similarity of the loss value, called iterative federated clustering algorithm (IFCA)
[4], which is summarized on Algorithm 3. In more details, in this approach the server generates
multiple global models and send all models to the participants. The participants train the cluster
models based on their local data and compute the loss values of all models. Then, each clients updates
the cluster model with the smallest loss and upload it to the server for cluster model aggregation.

1: Input: number of clusters k, any single cluster index j € [k], the total number of communication round 7", number of local epochs E, mini-batch
size B, learning rate

2:

3 fort=0,1,..T - 1do

4: Server: Broadcast cluster model 9;.. Jj €[kl

5: Randomly subsample m participating clients

6: for client i € m in parallel do

7 Determine cluster group: j = argmineqy F,(!:?;)

8: Generate one-hot vector 5; = {3.., }j_;l withs; ; =1 {i= f}
9: option I (gradient averaging):

10: Compute gradient: g; = {7."](9;_}

5=

option II (model averaging):
#; = ClientUpdate(¢', E, B, 1)
J

13: Send back s; and g; or @, to the server

14: end for

15: Server:

16:  option I (gradient averaging): 9;.*' — 6 - i+ Tieim 5148
17:  option II (model averaging): 9J’+] = Yictm 5101/ Tictm) 5i
18: end for

19: Return 0] j € [k]

20:

21: C]lenlUpdale(f?;. E, B, n) at the i-th machine

22: ¢ 6;

23: for local epoch from 1 to E do

24 for batch b € [B] do

25: 0! — 0 — N F(0'.b)

26: end for

27: end for

28: Return '

Algorithm 3. Iterative federated clustering algorithm (IFCA)

3.2.6. Federated learning for machinery fault diagnosis

Machinery fault diagnosis employing condition labelled data constitutes a pivotal tool in modern
industries proving numerous benefits such as machine reliability, operation safety and low
maintenance costs. Furthermore, several studies have pointed out the strong relation between the
early fault diagnosis and the energy consumption [5]. Exploiting the ground-breaking progress of the
recent deep learning models, data driven approaches has been widely employed by many industries
to perform machinery anomaly detection. Although these data driven methods exhibit great
performance accuracy, they require large amounts of high-quality supervised data to optimize an
accurate diagnostic model. In real industrial scenarios labelled condition monitoring data are usually
difficult and expensive to collect [6].

3.2.7. Problem Formulation

Taking into consideration that different companies and factories contain similar types of working
machines, and they usually have their own supervised dataset for fault diagnosis a Federated learning
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framework is employed to tackle the above-mentioned problem. Thus, the clients (different
industries) can collaborate to develop a global fault diagnosis classifier in the central server, without
sharing any sensitive information regarding their personal data. This study is conducted under the
following assumptions:

Multiple clients participate in the FL system, and each client has limited training data to effectively
develop its fault diagnosis model independently.

The fault diagnosis procedures of all the clients are the same, indicating that different participants
share the same label space.

3.2.8. FedAvg and Network architecture

To perform the FL scenario the FedAvg algorithm is used, described analytically in Algorithm 1. At each
training round, the fault diagnosis model is locally updated within each client, and then it is uploaded
to the server for model aggregation. The architecture of the deep neural network that is shared by the
server and the clients is illustrated in Figure 10. The model consists of the following modules. First,
two 1-D convolutional layers with filter size of 9 and filter number of 10 are employed to perform the
feature extraction process. After flattening, a fully connected layer with 64 neurons that is used to
capture the more complex features of the data, and final a fully connected layer is adopted where
each neuron stands for the classification confidence of each health condition.

Raw Vibration

Data
1D-Cnn 1D-Cnn
i - FC EC _
| 1gileleteés — 1gifz'|etegs —| 64 neurons Number of Softmax
leakyRelu
leakyRelu leakyRelu Y classes

Figure 10. The proposed fault diagnosis deep learning model.

To train the local models each client employs the cross-entropy loss function

n
s nc xlh

1 ] eXij
Le= ——E E Wyi = j}log ———~,
ns Zkil ik

i=1j=1 e

where n, is the number of local data for the client, {x;, y; ?;1 denotes the labelled samples and the
n. stands for the number of classification classes.

3.2.9. Experimental Setup

Dataset': The Case Western Reserve University (CWRU) rolling bearing dataset contains vibration
acceleration signals collected from the drive end of the motor and the sampling frequency is 12 KHz.
4 machinery health states are examined, i.e., healthy (H), outer race fault (OF), inner race fault (IF)
and ball fault (BF). The corresponding fault diameters are 7, 14, 21 mils. Thus, we have one healthy
and three fault modes were classified into ten categories (one health state and 9 fault states)
according to different fault sizes. Figure 11 summarizes the under examined health conditions.

Descriptions

Dataset Condition label 1 2 3 4 5 6 7 8 9 10
CWRU Fault location N/A (H) IF IF IF BF BF BF OF OF OF
Fault size (mil) 0 7 14 21 7 14 21 7 14 21

Figure 11. Description of the CWRU dataset.

! https://engineering.case.edu/bearingdatacenter
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Training Parameters: The number of training and testing labelled data was 17987 with dimension,
d=500. Furthermore, the batch size was set to 16, the number of training epochs for updating the local
models was 30, while the number of communication rounds between the server and clients was set
to 50. Finally, the Adam optimizer was employed to train the proposed models and the leakyRelu was
used as activation function.

3.2.10. Results

To quantify the performance of the under-examined federated learning scenario, extensive numerical
experiments were conducted in the context of machinery fault diagnosis. In more details, two
scenarios were examined were the first corresponds to the 11D case and the second focuses on the
non-lID case.

IID Scenario

In this scenario the local data of the clients are independent and identically distributed (IID), thus each
client contains labelled data from all the under-examined health conditions (10 in total). Particularly,
the performance of the FedAvg algorithm is examined with 5 and 10 clients, where the number of
training data per class was limited into the following range {100, 200, 300, 400, 600, 1000}. Figure 12
demonstrates the classification accuracy of the FedAvg scheme. It is obvious that the case with the 5
clients exhibits better performance compared to the scenario with the 10 clients, especially when
fewer training data is used.
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Figure 12. The proposed fault diagnosis deep learning model.

Non-IID Scenario
In this section a more realistic situation is considered, where the local labelled data of different clients
are not IID. To this end two non-IID scenarios were examined

e Scenario 1: with 10 faulty bearing conditions in total, 9 clients are considered where each
clients contains data only from one faulty condition and some data from the healthy condition
(category 1).
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