

1

D2.1 – Preliminary version of EnerMan Data Collection
and Management Components

Date : 28/02/2022

Deliverable No : 2.1

Responsible
Partner

: Industrial Systems Institute/Research Center ATHENA

Dissemination
Level

: Public

Ref. Ares(2022)1480427 - 28/02/2022

2

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Short Description

This deliverable gives an overview of the EnerMan project preliminary activities of WP2
T2.1 and T2.4. It consists of 5 sections that provide a description of the EnerMan edge/end
node architecture and execution environment, of the preliminary applications that can
be executed in this environment including security applications on cyber-attack
prevention and detection as well as a demonstration of some of the described
applications in action.

Document Information & Version Management

Document Title:
Preliminary version of EnerMan Data
Collection and Management Components

Document Type: Report and Demonstration

Main Author(s):

Apostolos Fournaris (ISI)
Alexander El-Kady (ISI)
Evangelos Haleplidis (ISI)
Alexander Gkillas (ISI)
Aris Lalos (ISI)

Contributor(s):

Giannis Morianos (TSI)
Andreas Miaoudakis (STS)
Panagiotis Rodosthenous (ITML)
Mina Marmpena (ITML)

Reviewed by:
Panagiotis Katrakazas (MAGGI)
Dominik Leherbauer (FHOOE)

Approved by: Marco Costantino (CRF)

Version Date Modified by Comments

0.1 10/11/2021 Apostolos Fournaris (ISI) ToC and first draft

0.2 12/12/2021
Alexander El-Kady (ISI)
Evangelos Haleplidis (ISI)

Initial input by ISI

0.3 15/01/2022

Aris Lalos (ISI)
Alexander Gkillas (ISI)
Panagiotis Rodosthenous
(ITML)
Mina Marmpena (ITML)

Input on Section 3
and 5

0.4 17/01/2022
Giannis Morianos (TSI)
Andreas Miaoudakis (STS)

Input on section 4

Project Information

Project Acronym: EnerMan

Project Title:
ENERgy-efficient manufacturing system
MANagement

Project Coordinator:
Dr. Ing. Giuseppe D'Angelo
CRF
giuseppe.dangelo@crf.it

Duration: 36 months

3

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

0.5 03/02/2022 Apostolos Fournaris (ISI)
Input on section 2
and section 5

0.6 08/02/2022 Apostolos Fournaris (ISI)
Final inputs have
been provided

0.9 14/02/2022 Apostolos Fournaris (ISI)
Final draft
submitted for
internal review

1.0 21/02/2022

Panagiotis Katrakazas
(MAGGI)
Dominik Leherbauer
(FHOOE)

Review comments
provided by the
reviewers

1.1 25/02/2022
Apostolos Fournaris (ISI)
Evangelos Haleplidis (ISI)

Final version of the
deliverable

1.2 28/02/2022
Kubra Yurduseven
(INTRACT)

Format Control

Disclaimer

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both. The publication reflects the author’s views. The
European Commission is not liable for any use that may be made of the information contained
therein.

4

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Table of Contents
Executive Summary .. 9

1. Introduction .. 10

2. EnerMan end nodes/edge Architecture and execution environment 12

2.1. Overall Execution environment Concept .. 12

2.2. Edge/End Node Architecture Enabling the Execution Environment 12

2.3. Conceptual Usage of the EnerMan edge/end node Execution Environment...................... 14

3. Data Processing and Assisted Intelligence ... 17

3.1. Data Harmonization ... 17

3.1.1. The role of data harmonization in EnerMan .. 17

3.1.2. Data harmonization targets .. 17

3.1.3. Technical implementation .. 18

3.2. Federated Learning Based Machine Status Detection ... 21

3.2.1. Federated Learning Introduction .. 21

3.2.2. Horizontal Federated Learning.. 21

3.2.3. Federated learning on non-IID Data .. 22

3.2.4. Personalization layer approaches ... 23

3.2.5. Clustering based approaches .. 24

3.2.6. Federated learning for machinery fault diagnosis ... 24

3.2.7. Problem Formulation.. 24

3.2.8. FedAvg and Network architecture .. 25

3.2.9. Experimental Setup .. 25

3.2.10. Results.. 26

3.3. Indoor Industrial space Mean Radiant Temperature distribution (MRT) estimation using

infrared thermography images .. 27

3.3.1. Different Scenarios examined in literature .. 27

3.3.2. Mean Radiant Temperature Calculation using the IR camera 28

3.3.3. Calculation of View Factors ... 28

3.3.4. Case study .. 29

4. Edge Node Security Aspects .. 30

4.1. Attack Threat Model .. 30

4.1.1. ICS threats .. 30

4.1.2. Threat Agents ... 31

4.1.3. Security Requirements ... 33

4.1.4. Security Architecture .. 34

5

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

4.2. Security Mechanisms ... 35

4.2.1. Cybersecurity Attack Detection .. 35

4.2.2. Cybersecurity Attack Prevention ... 36

5. Demonstration report ... 41

5.1. Execution Environment Hardware accelerated application Demonstration 41

5.1.1. Platform Creation with Linux system .. 41

5.1.2. Python script to run .. 42

5.2. Intelligent Data Processing Demonstration using software reconfiguration 45

5.3. AI Industrial Intrusion Detection Security Demo ... 49

5.3.1. Board set up ... 49

5.3.2. Set up the host ... 49

5.3.3. Train a quantized MLP with Brevitas ... 50

5.3.4. Import model into FINN and compare it with Brevitas execution 52

5.3.5. Synthesis of the accelerator and generation of the bitfile ... 52

6. Conclusion ... 55

7. REFERENCES .. 56

APPENDIX 1. EnerMan Execution Environment creation Workflow 57

6

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

TABLE OF FIGURES

Figure 1 Initial EnerMan Data Aggregator architecture .. 11

Figure 2. The implementation setup for the Data Collection and Control Plane 14

Figure 3 Conceptual usage of EnerMan edge node and interaction with the remaining EnerMan

framework .. 15

Figure 4 EnerMan data collection stages: (A) use-case, (B) WP2-T2.1 (edge), (C) WP3-T3.1 (cloud) .. 17

Figure 5 Examples of data representation inconsistencies that need to be addressed by the data

harmonization component. Multiple sheets with different granularity of the same measurements,

different indications for missing values, diverse timestamps format, date and time split in different

columns... 18

Figure 6 The data harmonization modules are integrated in the Data Aggregator edge node and

communicate with the Big Data Analytics Engine in the cloud.. 19

Figure 7. Preliminary Data Model sample .. 20

Figure 8. A demonstration of data partition in horizontal federated learning. In this example the two

clients contain five personal features, namely name, age, sex, height and weight. However, each client

has data for different persons. .. 22

Figure 9. An illustration of horizontal FL with personalization layers. Only the base layers (filled blocks)

are uploaded to server for the global model aggregation... 233

Figure 10. The proposed fault diagnosis deep learning model. ... 25

Figure 11. Description of the CWRU dataset. ... 25

Figure 12. The proposed fault diagnosis deep learning model. ... 26

Figure 13. MRT distribution maps in a pedestrian space [4] ... 28

Figure 14. View factors calculation .. 28

Figure 15. Modelled enclosed room [3] ... 29

Figure 16. MRT distribution maps [3]. The wall surfaces are divided into smaller surfaces with different

sizes to determine the optimal value regarding the accuracy of the MRT calculation. 29

Figure 17. The EnerMan Security Architecture ... 35

Figure 18. Logical representation of SNORT architecture flow.. 36

Figure 19. OAuth authentication and authorization flow.. 38

Figure 20 Hardware Security Token edge-node cryptography based cyberattack prevention setup.. 40

Figure 21. Python code for executing the vadd application and IP core .. 43

Figure 22. Terminal output of the register map.. 44

Figure 23. Terminal output of the final output of vadd .. 455

Figure 24. The ULTRA96 Board that is used in this Demo ... 46

Figure 25. Training loss per iteration .. 50

Figure 26. Test accuracy per iteration .. 51

Figure 27. The exported ONNX model in Netron .. 52

Figure 28. The steps towards the bitfile generation ... 53

Figure 29: Block design architecture in Vivado ... 53

Figure 30. Terminal Output .. 54

7

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

LIST OF ACRONYMS

AES Advanced Encryption Standard

API Application Programming Interface

BDAE Big Data Analytics Engine

CPS Cyber-Physical System

CPSoS Cyber-Physical System of Systems

CWRU Case Western Reserve University

DL Deep Learning

DMZ DeMilitarized Zone

DoA Description of Action

DoS Denial of Service

ENISA European Union Agency for Cybersecurity

FIFO First In First Out

FL Federated Learning

FPGA Field Programmable Gate Array

GPU Graphic Processing Unit

HLS High Level Synthesis

HST Hardware Security Token

HTTP HyperText Transfer Protocol

I2DS Industrial Intrusion Detection System

ICS Industrial Control Systems

IDS Intrusion Detection System

iDSS Intelligent Decission Support System

IETF Internet Engineering Task Force

IFCA Iterative federated clustering algorithm

IID Independent and Identically Distributed

IIoT Industrial Internet of Things

IP Intellectual Property

IPS Intrusion Prevention System

IR InfraRed

JWT JSON Web Token

MITM Man In The Middle

ML Machine Learning

MLP MultiLayer Perceptron

MPSoC MultiProcessor System on a Chip

8

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

MRT Mean Radiant Temperature

OAuth Open Authorization

ONNX Open Neural Network Exchange

OT Operational Technology

PKCE Proof Key for Code Exchange

PKI Public Key Infrastructure

PL Programmable Logic

PLC Programmable Logic Controller

PS Processor System

QNN Quantized Neural Network

ReLU Rectified Linear Unit

REST Representational state transfer

SCADA Supervisory Control and Data Acquisition

SoC System on a Chip

TLS Transport Layer Security

UNSW University of New South Wales

WP Work Package

XRT Xilinx RunTime

XSS Cross-Site Scriptiong

9

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

EXECUTIVE SUMMARY

This deliverable is focused on the preliminary activities of WP2 and especially in the activities of Task

2.1 (T2.1) and Task 2.4 (T2.4). Initially we provide an introduction of the overall approach in the WP2

and then in section 2 we present the analysis on Execution Environment of the EnerMan edge/end

node along with the node’s architecture that supports such an environment. Afterwards, in section 3

the preliminary applications that have been developed in WP2 as those have been prescribed in Task

2.2 are being briefly presented however, we do not provide thorough analysis on them since there is

a dedicated deliverable on T2.2 on M18. Similarly, we do not deliberate on the activities of T2.3 since

there is a dedicated deliverable report on M18 for that task. In section 4 we focus our analysis explicitly

on the security aspects that are linked with the EnerMan edge layer based on the activities of Task

2.4. Finally, in Section 5 we demonstrate the usage of the EnerMan execution environment for various

scenarios and showcase how some applications described in Section 3 and Section 4 are implemented

in action. The deliverable is concluded with an appendix that presented the custom design flow that

was used in order to create the EnerMan execution environment on the edge/end node that is

implemented on a Xilinx MPSoC device.

10

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

1. INTRODUCTION

The second work package of the EnerMan project is focused on the data collection and data processing

at the end devices and edge level of the EnerMan framework. This means that in this WP we are going

to research, design and implement all the relevant components of the EnerMan data collection and

Control plane on the edge of the industrial manufacturing infrastructure. Also, we are going to create

the necessary computing and execution environment that will allow the appropriate deployment,

execution, and efficient operation of such components. Our goal in this WP is to create an EnerMan

intelligent Cyber-Physical System (CPS) end node that will act as an end device or/and as a data

aggregator for a series of in-field devices (machines) within the industrial environment. Apart from

simple data collection, the EnerMan node should be able to perform intelligent operations that can

support specialized industrial functionalities (e.g., Predictive maintenance or intelligent temperature

measurement or energy consumption local data predictions) to pre-process and fine-tune data that

are going to be forwarded to the EnerMan system layer (as a private or a public cloud big data analytics

engine etc.). We adopt, as an execution environment, embedded system solutions that have Multiple

Processor System on Chips with dedicated FPGA fabric that can offer custom to our needs hardware

acceleration and hardware level (programmable logic) reconfiguration, to support flexibility in the

execution of the various end/edge node operations and also to offer a high level of efficiency. Apart

from the above, in WP2 we also considered the need for an edge device-based control loop

mechanism that will collect the needed configuration from the EnerMan system layer (e.g., from the

intelligent Decision Support System, iDSS) and forward it to the factory automation processes (e.g.,

PLCs or other control (actuation) devices). Given that reconfiguration is also supported by the

EnerMan edge node (software and hardware based) the control loop should also be able to offer

control of the EnerMan edge node functionality and how such functionality can be reconfigured over

time (during operation) according to the EnerMan platform suggestions.

Following the Description of Action (DoA) in the General Assembly of the EnerMan project, the WP2

is meant to provide the necessary execution environment for performing data collection and

processing at the edge of the industrial infrastructure so that we can deploy in such an environment

the EnerMan software agents aiming to do holistic data processing using diverse sensing modalities

for specific industrial functions as those are specified by the EnerMan user requirements. Of course,

goal of WP2 is also to create such software agents (envisioned as small software programs executed

in the EnerMan execution environment). Apart from those actions in WP2 we are designing and

implementing the edge IIoT level support mechanism for the EnerMan flexible control loop and

protect the overall data collection mechanism against security and privacy breaches using dedicated

security operations aiming to act as proactive (to prevent security breaches) and reactive (to detect

security attacks) measures.

As can be seen in Figure 1 the WP2 designed and developed edge node is going to act as an EnerMan

intelligent CPS node that will collect sensor data and as a data aggregator that will harmonize and

preprocess such data to be ready for the big data analysis performed at the cloud level of the EnerMan

architecture. During the initial user requirements and architecture requirements phase of the

EnerMan project (performed in WP1) it became apparent that the two roles can be merged into a

unified CPS component (the EnerMan intelligent node) that can include both roles originally described

in the DoA document (i.e., data collection/aggregation, data harmonization and preprocessing).

11

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 1. Initial EnerMan Data Aggregator architecture

The data that we currently consider at the edge level (either raw data or data after preprocessing) can

be the following

▪ Machine energy consumption

▪ Multiple sensory data (temperature, pressure, humidity, etc.) from existing pilot deployed

sensors

▪ Machine functionality status for predictive maintenance (machine faulty state)

The above activities of WP2 span in 4 tasks (Task 2.1 to Task2.4). Task 2.1 is focused on setting up the

appropriate execution environment and the research and development of how to efficiently deploy

the Edge node intelligence and security functionality into the execution environment. Task 2.2 is

focused on the design and development of the appropriate intelligence algorithms (Machine Learning

based) to be deployed in the EnerMan intelligent edge node. Task 2.3 is about the realization of the

EnerMan control loop and the reconfigurability that is supported by the EnerMan architecture. Task

2.4 is about the establishment of all the data security functionality that will prevent security breaches

of the collected, processed, and transmitted data from the edge node to the EnerMan cloud solutions.

Given that according to the EnerMan workplan there are dedicated deliverables for Task 2.2 and Task

2.3, in the deliverable (D2.1) we report the preliminary activities of Task 2.1 and Task 2.4. We also

provide a brief description of the Task 2.2 activities (that are currently in progress) since those are

linked with the Task 2.1 activities and the structures that are implemented there.

Thus, in this deliverable, we focus on the activities that are in progress till Month 14 of the project

(note that WP2 and the relevant tasks are concluded in M18). These activities are:

• The research, design, and development of the appropriate execution environment in the

EnerMan CPS intelligent edge node

• The capabilities that this execution environment can provide at the current state of the project

• The algorithms that are currently designed and under deployment in the created execution

environment

• The security functionality that such an environment can currently support

Finally, in the deliverable, we provide in a tutorial-like fashion the workflow to be followed to deploy

an application on the developed execution environment including hardware

acceleration/reconfiguration support.

Legacy end

node

sensor-

merge

12

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

2. ENERMAN END NODES/EDGE ARCHITECTURE AND EXECUTION

ENVIRONMENT

2.1. Overall Execution environment Concept

One of the fundamental activities of WP2 (reflected in T2.1) is to design the appropriate execution

environment for the EnerMan end nodes and data aggregators that will enable the easy deployment

and usage of the EnerMan edge intelligence as well as the control loop reconfiguration (designed in

T2.2 and T2.3). Given that we are aiming to provide highly efficient data processing at the edge as well

as the maximum possible reconfiguration, it is imperative that we structure the execution

environment to include mechanisms that will be able to offer such services.

In general, the execution environment of the EnerMan end/edge node should include several

components that will allow the hardware and software support of the EnerMan edge functionality.

Given that the EnerMan project aims at providing reconfiguration of the EnerMan edge functionality,

the EnerMan execution environment should also be able to support such service at the hardware level

(using FPGA programmable logic) and at the software level. Thus, before actually deploying specific

algorithms (as those are specified in T2.2) we need to provide an execution environment that can

allow the easy deployment, configuration and reconfiguration of such algorithms in hardware and in

software. The EnerMan software agents, which constitute, the operations to be executed in the

EnerMan end/edge nodes will rely exclusively on the capabilities of such execution environment.

2.2. Edge/End Node Architecture Enabling the Execution Environment

We envision the EnerMan intelligent Edge node as a heterogenous embedded system device that can

perform multiple activities within the manufacturing infrastructure in an efficient manner. This edge

device should be able to collect the data that are provided to it by the various sensors existing inside

the industrial domain, harmonize those data in order to be compatible with the data expectations

required by the EnerMan big data analytics engine and in parallel also process those data so as to offer

the EnerMan platform as well as the operator appropriate information that will help them make

informed decisions on the optimal energy sustainability options. This indicate that the Data collection

and Processing should be manifested in the EnerMan intelligent edge node with various ways and in

an efficient manner. Furthermore, the node should be versatile enough to offer a broad range of

services that may vary from time to time and from industry to industry. This highlights, apart from

high efficiency, the need for flexibility in the offered operations of the node. To keep efficiency at high

level regardless of the configuration of the EnerMan edge node we opt for support of reconfigurability

both in hardware and software. This gives the ability to change, at a reasonable degree, the

functionality of the EnerMan intelligent edge node with respect to the underlined industry needs

without having to redesign/remanufacture the node itself. In practice, this means that the execution

environment of the EnerMan intelligent edge node should be able to handle such reconfigurability

and efficiency features. From a hardware perspective, we consider as a best match to the above

requirements, the use of MultiProcessor System on Chip (MPSoC) embedded system devices that can

host in its core, multiple processors (usually multicore processors) to achieve efficiency but also

specialized hardware components for specific applications (e.g., Graphic Processing Units (GPU) or

real time processors). To further support hardware reconfigurability, we consider embedded system

MPSoCs that fathom in their SoC architecture, reconfigurable hardware programmable logic in the

form of an FPGA fabric. The latest FPGA manufacturer solutions are more than capable of supporting

the above-described setup. In EnerMan we opt for Xilinx manufacturer devices focusing on the Xilinx

Zynq Ultrascale+ MPSoC design as this is realized in two low-end, low-cost embedded system boards

i.e., the Xilinx ZCU 104 or 102 development board and the Avnet ULTRA96 development board. The

13

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

advantage of such development boards is that they can be used both as means for prototyping as well

as in the context of the actual final implementation of the EnerMan intelligent edge node.

In Figure 2 the overall architecture and concept of the EnerMan intelligent Edge node is presented.

The node will accept and process data from the distributed sensors using a platform that operates

both in the software and hardware domains. These data are processed by the MPSoC unit that runs a

Linux-based OS, i.e., PetaLinux, on its software side and uses its PL to implement specific types of IP

cores, i.e., functional modules, with optimized processing and energy consumption metrics, on its

hardware side. Naturally, the OS is equipped with all the necessary firmware for software to hardware

communication provided by the Xilinx Runtime (XRT) library that accompanies the embedded OS

distribution. On top of the OS, however, we have implemented and configured additional

reconfigurability/flexibility features to support the EnerMan node requirements. To achieve software

reconfigurability we introduce in the execution environment Docker based containerization, i.e.,

Docker containers, that will allow for the introduction to the node, input from the other EnerMan

planes such as the Management plane as well as support of functionality that cannot be offered by

the Xilinx supported PetaLinux OS. In other words, the data collection and control plane, will support

an interactive relationship between itself and the other EnerMan framework components such as the

other planes as well as the sensors and actuators.

Furthermore, given that many Machine Learning and Deep Learning core software libraries are

implemented in the python programming language, in the EnerMan execution environment we

integrate the PYNQ python library offered by the Xilinx tool into the PetaLinux OS environment as an

alternative mechanism of supporting hardware (FPGA PL) reconfiguration. Note, that existing Xilinx

solutions offer hardware reconfiguration through PetaLinux either using the native Xilinx runtime

(XRT) or using PYNQ python Jupyter notebooks, not both. We have managed to employ both such

approaches in the EnerMan edge/end node execution environment. Beyond that, we have managed

on top the above two hardware reconfiguration approaches, software reconfiguration through Docker

containers.

As shown in Figure 2 the EnerMan edge/end node architecture consists of 4 different layers. The first

layer, hardware layer, includes the FPGA fabric (the programmable logic) on which using the EnerMan

execution environment capabilities (through the XRT or the PYNQ python library) we can deploy the

hardware part (the designed IP Cores) of an EnerMan application (as will be demonstrated in section

5 of this deliverable). Above the hardware layer, there is the processor layer that is executing the

software part of an EnerMan application (e.g., the EnerMan software agents). The EnerMan

applications themselves are deployed using the PetaLinux OS environment that constitute the OS layer

of the EnerMan edge/end node. On top of this layer, we have built the overall EnerMan execution

environment functionality that as mentioned in the previous paragraphs includes the Docker

container support and the PYNQ library support that has been adapted to be used in parallel with the

XRT environment. The above capabilities rely on the EnerMan application backbone that includes the

necessary core, backend, functionality to enable the described execution environment. Finally, this

application layer, includes the necessary software functionality to securely transmit the collected data

or relevant extracted data using the TLS1.3 protocol that is enhanced with quantum – safe security

capabilities to support long lasting and strong security.

14

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 2. The implementation setup for the Data Collection and Control Plane

To fully employ the efficient execution of an algorithm of the EnerMan software agent (in the form of

an executable application) we follow the process shown in the lower left side of Figure 1. At design

time we obtain the algorithm software implementation and place is in a controlled environment

where we use various computation profiling tools like control flow graph analyzers showing the

dependence between functions of the algorithmic implementation and their time delay or flame

graphs showing the memory usage and memory depth of such function during execution. The goal is

to identify computationally demanding or slow execution functions (or software code in general) and

following a crude hardware /software partitioning reassign the execution of such functions on

dedicated hardware Intellectual Property (IP) Cores that are deployed within the EnerMan edge node

execution environment.

2.3. Conceptual Usage of the EnerMan edge/end node Execution Environment

The EnerMan edge node and its execution environment is used in accordance with the overall

EnerMan framework/platform as shown in Figure 3. The EnerMan edge/end node collects input from

the pilots in the form of datasets (the format varies from pilot to pilot), processes that input and

forwards the result to the system layer of the EnerMan framework (deployed in public or private

cloud). Typically, the consumer of the EnerMan edge/end node results is the EnerMan Big Data

Analytics Engine. Also, the EnerMan edge/end node is acting as an enabler of control configurations

that stem from the EnerMan intelligent Decision Support System (iDSS) by forwarding those

configurations to the pilot site infrastructure. In practice, given the EnerMan pilot site constrains (and

not to disturb the actual factory production lines/process) the actuation configuration is forwarded to

the Factory human personnel for evaluation (acting as suggestions).

Most importantly in Figure 3, the currently identified preprocessing applications (acting as the

EnerMan edge/end node software agents) are being shown and their interaction with the overall

EnerMan framework is briefly presented. Typically, each pilot collects data from the in-field sensors

deployed in the factory and stores them in some data collection point. The EnerMan edge node acting

as data aggregator interacts with that collection point and consumes such data by initially transferring

them (in a synchronous or asynchronous way depending on the pilot needs) to edge node storage

area and then harmonizing them using a data harmonization component. This component’s goal is to

prepare the pilot data in order to be fit for the EnerMan platform, mainly for the EnerMan big data

analytic engine. The EnerMan edge node data harmonizer produces datasets that can be either

directly forwarded to the Big Data analytics Engine or can be further preprocessed within the EnerMan

15

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

edge/end node. The preprocessing performed at the edge is associated with specific ML/DL based

operation that follow the federated learning model. Each EnerMan edge/end node in such case acts

as a client of an AI federation that has a local ML/DL model. This local model is trained using the data

that are provided locally to each EnerMan edge/end node and when data classification is made the

accuracy of the results is limited due to the volume and quality of this local dataset. However, to

improve the overall classification (or even prediction) accuracy periodically the client local models are

forwarded to a Federated Learning central server that compose the local models into a Federated

global model that can provide considerably more accurate classification compared to single local

models. The global model is then shared with all clients thus updating their local models and the

training process resumes while classification is taking place. The overall process is further analyzed in

section 3 where we also describe a demonstration of the approach for machine health status

classification (in the overall concept of predictive maintenance) as part of a Deep Anomaly Detection

classification concept.

Figure 3 Conceptual usage of EnerMan edge node and interaction with the remaining EnerMan framework

Apart from the processing of datasets from pilot’s sensors, the EnerMan edge/end node can also

process data that are collected for specific reasons from sensors of the edge/end node itself. Infrared

thermal camera images or videos from the manufacturing space is a good candidate for the

capabilities of the EnerMan execution environment. Using such data, we can infer the Mean Radiant

Temperature distribution on a given industrial manufacturing space and eventually visualize this

information in the EnerMan visualization framework.

Notably, the harmonized data as well as the data produced after preprocessing at the edge are

transmitted to the rest of the EnerMan framework securely. Furthermore, we also make sure that the

16

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

EnerMan edge/end node is protected against security attacks that can potentially maliciously modify

(or poison) the data processed within the EnerMan edge/end node. In general, the EnerMan execution

environment is supporting several security services focusing on cyberattack prevention and detection.

More information on the EnerMan edge/end node security is provided in section 4 of this deliverable.

Finally, the EnerMan execution environment can handle control-configurations that are provided by

the EnerMan iDSS. This activity is out of scope for this deliverable and will be analyzed in detail in the

dedicated deliverable for T2.3 (i.e., Deliverable 2.4)

17

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

3. DATA PROCESSING AND ASSISTED INTELLIGENCE

3.1. Data Harmonization

Data harmonization describes the preparation of raw data originating from various sources with the

goal to provide a more standardized and uniform data representation. It is an important stage in a

data preparation pipeline since the raw data are produced in custom formats which are diverse and

pose a challenge for the application of more advanced preprocessing technics (e.g., interpolation,

resampling, clustering). The harmonization can be achieved by identifying similarities in the various

data sets, retaining critical requirements, and generating a common standard. Data quality checks are

also critical at this stage to ensure the data integrity and validity before data features are propagated

to the next stage of preprocessing.

3.1.1. The role of data harmonization in EnerMan

Data harmonization as a component of the EnerMan platform aims to bridge data collection

requirements between the edge node and the cloud infrastructure, addressed in WP2 and WP3

respectively. As demonstrated in Figure 4, data collection begins at the end-user’s premises (Figure 4:

A), with customized representations built internally to serve the needs of the organization (different

PLCs or recorders). Subsequently, EnerMan edge nodes apply the harmonization pipelines (Figure 4:

B) that ensure that the data stored in the cloud infrastructure (Figure 4: C) have an aligned

representation that will allow to process them with more generic methodologies across pilots and use

cases. Thus, the data harmonization component facilitates the data collection between the end users

and the Big Data Analytics Engine (BDAE) in the cloud (WP3-T3.1), by implementing a data pipeline

from raw data provided by the use cases to structured time-series data, available for downstream

tasks.

Figure 4 EnerMan data collection stages: (A) use-case, (B) WP2-T2.1 (edge), (C) WP3-T3.1 (cloud)

3.1.2. Data harmonization targets

In this section we will discuss some concrete data aspects from the EnerMan raw datasets that the

data harmonization component aims to transform into a uniform representation across use cases.

File formats: Raw datasets are provided in diverse formats, e.g., .xlsx, .csv. Moreover, .xlsx files often

consist of multiple sheets corresponding to various aspects of the same use case and process (e.g.,

same measurement with different time aggregation). The harmonization task aims to convert the files

into a uniform format suitable for modelling frameworks and database ingestion processes (.csv or

.parquet depending on the batch sizes).

Data Schema: Attributes’ names are often defined in forms that are not suitable for big data

processing, e.g., they contain spaces, are split in multi-raw header or are not in English. Furthermore,

the data schema is not always readily transferable to a tabular format since there might be multiple

headers to a single sheet or merged cells might occur.

18

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Missing data indication: Missing value indications vary across use cases and organizations, e.g., empty

cell, null, ‘0’ or ‘N/A’, ‘NaN’ etc. Data harmonization must detect all these different representations

and transform them into a uniform type, recognizable from a programming point of view.

Measurement units: Units are not always explicitly indicated. In case a data set has the same type of

measurement (for example temperature) the harmonization layer needs to ensure that the unit of

measurements is always the same (e.g., Celsius).

Timestamps: Another source of variation is related to the time zone of the timestamps of each

measurement. It is not always evident whether the initial data collection used the local time zone or

Coordinated Universal Time (UTC). Furthermore, organizations, use cases and processes utilize diverse

timestamp formats (depending on their PLC or recording configurations), or even separate date and

time columns breaking the timestamp in two parts. The harmonization pipelines need to change these

dates into the same time zone and in unique format to improve data usability and integrity.

Metadata information: Raw datasets are not accompanied by metadata information that would be

necessary for advanced preprocessing and analytics in the cloud. Examples of such information are

the expected datatypes for each measurement, min-max limits or descriptive statistics for numerical

values, expected classes for categorical values, expected granularity or sampling rate, localization,

measurement type (e.g., sensor, actuator), how should missing values be interpreted for a particular

measurement and if they should be acceptable.

Figure 5 Examples of data representation inconsistencies that need to be addressed by the data harmonization component.

Multiple sheets with different granularity of the same measurements, different indications for missing values, diverse
timestamps format, date and time split in different columns.

3.1.3. Technical implementation

Data Harmonization is implemented as a python package which can be integrated to the EnerMan at

the edge node’s Data Aggregator and is configured to communicate with the Big Data Analytics Engine

(WP3-T3.1). A higher-level depiction of the architecture is presented in Figure 6. The main components

of the Data Harmonization package are the following: dedicated harmonizers for each use case, a data

loader class, a library of harmonization utilities, and a library for data quality checks.

19

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 6 The data harmonization modules are integrated in the Data Aggregator edge node and communicate with the Big
Data Analytics Engine in the cloud.

Data harmonization at the edge level is necessary as described in Section 3.1.1 to support the Big Data

Analytics Engine, a centralized EnerMan component that is responsible for handling advanced

preprocessing tasks. The data harmonization package is designed to be a lightweight solution adapted

to the use case specific characteristics and separated from the cloud infrastructure which involves

processes that require data that have been previously standardized. This setup enhances modularity

of the EnerMan solution and a balance between specialization and generalization, addressed at the

edge and in the cloud, respectively.

More concretely, the communication entails fetching the use case specific Data Model from the Big

Data Analytics Engine to the edge, and in the other direction, transferring the harmonized datasets to

the cloud. Data Model prototypes are designed and developed in WP3-T3.1 (a centralized approach is

taken since they are expected to be used also from downstream tasks that only communicate with

the Big Data Analytics Engine). A preliminary form of a Data Model is depicted in Figure 7.

20

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 7. Preliminary Data Model sample

The components of the harmonization package are the following:

Harmonizers: A python class designed for each use case’s data profile. It takes a use case specific Data

Model as an argument and provides methods for loading the data, preprocessing it with the

harmonization functions that correspond to the specific use case, and applying the quality checks on

21

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

the harmonized data. The Data Model contains information to be used by the class methods, e.g., the

expected feature names, data types, localization information.

Data loader: A python class which is called from the harmonizers and handles the loading of the data.

It provides methods to enable loading different data formats.

Harmonization utilities: A library of preprocessing functions to harmonize the data. For example,

there are functions to replace the missing data indication with a standardized form, to transform local

timestamps to UTC+00 and datetime formats to ISO 8601 (yyyy-MM-dd'T'HH:mm:ssZ). It also provides

functions to transform attributes’ names and data types according to a given list provided by the

Harmonizer class as described in the Data Model.

Data quality checks: A library which contains functions to run basic data quality checks. For example,

functions that examine whether the data schema matches the Data Model schema, the data types are

the expected ones, min and max values whenever defined are not exceeded.

The final harmonized datasets are stored in an unstructured database in the cloud where they are

further preprocessed in the final layer of preprocessing (WP3-T3.1) to derive time-series data.

3.2. Federated Learning Based Machine Status Detection

3.2.1. Federated Learning Introduction

Traditional distributed deep learning approaches demand a large amount of private data to be

processed and aggregated at central servers during the model training stage by employing some

suitable distributed optimization algorithm. However, this distributed process suffers potential data

privacy leakage issues. On the other hand, federated learning (FL) has been emerging as a promising

approach for decentralized model training focusing on the data privacy aspect of the problem. In

particular, it allows the clients to train and acquire an accurate globally trained model without sharing

any private data with other users.

The scope of the federated learning scheme is to obtain a global model, say 𝜃 (Eq. (2)) that can

minimize some aggregated local function 𝑓𝑘(𝜃𝑘) (Eq. (1)), where x denotes the data feature, y is the

data label, 𝑛𝑘 is the local data size, 𝑛 = ∑ 𝑛𝑘
𝐶𝑥𝐾
𝑘=1 is the total number of sample pairs, C stands for the

participation ratio assuming that not all local clients participate in each round of model updates and

k is the client index.

𝑓𝑘(𝜃𝜅) =
1

𝑛𝜅
∑ 𝑙𝑜𝑠𝑠(𝑥𝑖 , 𝑦𝑖; 𝜃𝜅)

𝑛𝑘
𝑖 (1)

min
𝜃

𝑓(𝜃) = ∑
𝑛𝑘

𝑛
𝑓𝑘(𝜃𝑘)

𝐶𝑥𝐾

𝜅=1

 (2)

Federated learning can be divided into two major categories, namely the horizontal and vertical FL

based on the characteristics of data distribution across the participants [1]. In this study, we focus on

the horizontal federating learning scheme.

3.2.2. Horizontal Federated Learning

Horizon FL or homogeneous FL relates the case where the local training data of clients share the same

feature space but have different sample space. Figure 1 exemplifies this scenario, where client 1 and

client 2 share the same personal features (feature space) but they contain data for different persons.

22

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 8. A demonstration of data partition in horizontal federated learning. In this example the two clients contain five
personal features, namely name, age, sex, height and weight. However, each client has data for different persons.

The FedAvg algorithm [2] is a typical case of the horizontal FL providing an efficient methodology to

train a global model without sharing any client’s data. In more details, the global model, say 𝜃 and the

local models 𝜃𝑘 share the same deep learning architecture with different model parameter values,

since each local model is independently optimized based on its local data. After the local training, the

models are uploaded to the server. Considering that all local models have the same structure, the

server aggregates the local models and generates the corresponding global model 𝜃. Algorithm 1

summarizes the FedAvg approach.

Algorithm 1. FedAvg. K is the total number of clients; B is the size of mini-batches, T is the total number of communication
rounds, E is the local training epochs, and η is the learning rate.

3.2.3. Federated learning on non-IID Data

Horizontal federated learning approaches, such as FedAvg algorithm exhibit satisfactory performance

on Independent and Identically Distributed (IID) data. FL methods depend on stochastic gradient

descent, which is widely employed for training deep learning models achieving good empirical results.

The IID sampling of the training data is pivotal to guarantee that the stochastic gradient is an unbiased

estimate of the full gradient. However, in real world settings and applications usually the local data of

each client is not IID. Non-IID data heavily affect the performance of the horizontal FL models, since

the local data distributions are different from the global data distribution, thus the averaged local

model parameters may diverge from the global model parameters. In literature there is a plethora of

studies that aim to address the challenges that non-IID data impose [1], [3], [4].

23

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

3.2.4. Personalization layer approaches

Different from the FedAvg approach, in this case each client is allowed to contain some personalized

layers in the deep learning models focused on the local data distribution of the clients. Figure 9

illustrates an example of these networks, where each client model comprises of personalization layers

(filled blocks) and base layers. It should be highlighted that only the base layers are uploaded to server

for the global model aggregation, thus significantly reducing the communication costs, since only the

base layers need to be uploaded to server.

FedPer algorithm [3] constitutes a characteristic case of these approaches. Particularly, in the FedPer

model the base layers are shallow neural networks focused on capturing high-level representations of

the local data and the personalization layers are deep neural networks aiming to tackle the

classification problems. Algorithm 2 summarizes this method.

Figure 9. An illustration of horizontal FL with personalization layers. Only the base layers (filled blocks) are uploaded to
server for the global model aggregation

Algorithm 2. FedPer

24

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

3.2.5. Clustering based approaches

Considering the highly non-IID distribution of the clients’ data, instead of having only one global

model, a client clustering method is proposed to develop a multi-center system by clustering the

clients into different clusters. By creating multiple global models this FL framework is able to capture

the heterogeneous data distribution of the clients. Nevertheless, note that the data distribution of

each user is private. Thus, a clustering methodology is developed that performs the clustering of the

users based on the similarity of the loss value, called iterative federated clustering algorithm (IFCA)

[4], which is summarized on Algorithm 3. In more details, in this approach the server generates

multiple global models and send all models to the participants. The participants train the cluster

models based on their local data and compute the loss values of all models. Then, each clients updates

the cluster model with the smallest loss and upload it to the server for cluster model aggregation.

Algorithm 3. Iterative federated clustering algorithm (IFCA)

3.2.6. Federated learning for machinery fault diagnosis

Machinery fault diagnosis employing condition labelled data constitutes a pivotal tool in modern

industries proving numerous benefits such as machine reliability, operation safety and low

maintenance costs. Furthermore, several studies have pointed out the strong relation between the

early fault diagnosis and the energy consumption [5]. Exploiting the ground-breaking progress of the

recent deep learning models, data driven approaches has been widely employed by many industries

to perform machinery anomaly detection. Although these data driven methods exhibit great

performance accuracy, they require large amounts of high-quality supervised data to optimize an

accurate diagnostic model. In real industrial scenarios labelled condition monitoring data are usually

difficult and expensive to collect [6].

3.2.7. Problem Formulation

Taking into consideration that different companies and factories contain similar types of working

machines, and they usually have their own supervised dataset for fault diagnosis a Federated learning

25

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

framework is employed to tackle the above-mentioned problem. Thus, the clients (different

industries) can collaborate to develop a global fault diagnosis classifier in the central server, without

sharing any sensitive information regarding their personal data. This study is conducted under the

following assumptions:

Multiple clients participate in the FL system, and each client has limited training data to effectively

develop its fault diagnosis model independently.

The fault diagnosis procedures of all the clients are the same, indicating that different participants

share the same label space.

3.2.8. FedAvg and Network architecture

To perform the FL scenario the FedAvg algorithm is used, described analytically in Algorithm 1. At each

training round, the fault diagnosis model is locally updated within each client, and then it is uploaded

to the server for model aggregation. The architecture of the deep neural network that is shared by the

server and the clients is illustrated in Figure 10. The model consists of the following modules. First,

two 1-D convolutional layers with filter size of 9 and filter number of 10 are employed to perform the

feature extraction process. After flattening, a fully connected layer with 64 neurons that is used to

capture the more complex features of the data, and final a fully connected layer is adopted where

each neuron stands for the classification confidence of each health condition.

Figure 10. The proposed fault diagnosis deep learning model.

To train the local models each client employs the cross-entropy loss function

𝐿𝑐 = −
1

𝑛𝑠
∑ ∑ 1{𝑦𝑖 = 𝑗} log

𝑒𝑥𝑖,𝑗
ℎ

∑ 𝑒𝑥𝑖,𝑘
ℎ𝑁𝑐

𝑘=1

𝑛𝑐

𝑗=1

𝑛𝑠

𝑖=1

,

where 𝑛𝑠 is the number of local data for the client, {𝑥𝑖 , 𝑦𝑖}
𝑖=1
𝑛𝑠 denotes the labelled samples and the

𝑛𝑐 stands for the number of classification classes.

3.2.9. Experimental Setup

Dataset1: The Case Western Reserve University (CWRU) rolling bearing dataset contains vibration

acceleration signals collected from the drive end of the motor and the sampling frequency is 12 KHz.

4 machinery health states are examined, i.e., healthy (H), outer race fault (OF), inner race fault (IF)

and ball fault (BF). The corresponding fault diameters are 7, 14, 21 mils. Thus, we have one healthy

and three fault modes were classified into ten categories (one health state and 9 fault states)

according to different fault sizes. Figure 11 summarizes the under examined health conditions.

Figure 11. Description of the CWRU dataset.

1 https://engineering.case.edu/bearingdatacenter

26

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Training Parameters: The number of training and testing labelled data was 17987 with dimension,

d=500. Furthermore, the batch size was set to 16, the number of training epochs for updating the local

models was 30, while the number of communication rounds between the server and clients was set

to 50. Finally, the Adam optimizer was employed to train the proposed models and the leakyRelu was

used as activation function.

3.2.10. Results

To quantify the performance of the under-examined federated learning scenario, extensive numerical

experiments were conducted in the context of machinery fault diagnosis. In more details, two

scenarios were examined were the first corresponds to the IID case and the second focuses on the

non-IID case.

IID Scenario

In this scenario the local data of the clients are independent and identically distributed (IID), thus each

client contains labelled data from all the under-examined health conditions (10 in total). Particularly,

the performance of the FedAvg algorithm is examined with 5 and 10 clients, where the number of

training data per class was limited into the following range {100, 200, 300, 400, 600, 1000}. Figure 12

demonstrates the classification accuracy of the FedAvg scheme. It is obvious that the case with the 5

clients exhibits better performance compared to the scenario with the 10 clients, especially when

fewer training data is used.

Figure 12. The proposed fault diagnosis deep learning model.

Non-IID Scenario

In this section a more realistic situation is considered, where the local labelled data of different clients

are not IID. To this end two non-IID scenarios were examined

• Scenario 1: with 10 faulty bearing conditions in total, 9 clients are considered where each

clients contains data only from one faulty condition and some data from the healthy condition

(category 1).

27

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

• Scenario 2: 9 clients were considered where each client has data of 3 conditions chosen from

conditions [2, 3, 4] or [5, 6, 7] or [8, 9, 10] as described in Figure 11. Moreover, all clients have

data from the healthy state.

Table 1. Accuracy per non-IID scenario

It is evident that the proposed federated learning approach although exhibits very good results

(almost 100% accuracy) for the IID. scenario, in the case of the non-IID. scenario the performance

drops dramatically. Thus, better, and more suitable approaches for the non-IID. case should be

explored. In future work, we aim to implement FL for non-IID data methodologies, such as algorithm

[3], [4] and compare their performance with the FedAvg method.

3.3. Indoor Industrial space Mean Radiant Temperature distribution (MRT) estimation

using infrared thermography images

The Mean Radiant Temperature (MRT) at a specific point in an indoor space is defined as the uniform

temperature of an imaginary enclosure in which radiant heat transfer from the examined point (e.g.,

object) equals the radiant heat transfer in the actual nonuniform enclosure [1]. Due to the fact that it

is difficult to measure MRT values directly, various non-intrusive instruments (such as GTs (globe

thermometer) and IR cameras) are employed to derive approximate MRT values [2]. In more detail,

the MRT at a point in indoor space can be determined from the temperatures of the surfaces that

enclose the point, as shown in equation (1).

𝑇𝑀𝑅𝑇
4 = 𝜀1𝑇𝑠1

4 𝐹𝑝−1 + 𝜀2𝑇𝑠2
4 𝐹𝑝−2 + ⋯ + 𝜀𝑛𝑇𝑠𝑛

4 𝐹𝑝−𝑛 (1)

where 𝑇𝑠𝑖
 stands for the temperature of the surface 𝑖, 𝐹𝑝 – 𝑖 corresponds to the view factor from the

target point to surface 𝑖 and 𝜀𝑖 is the emissivity of surface 𝑖, for 𝑖 = 1 … 𝑛. The view factor is defined

as the percentage of radiant energy emitted from on surface to another surface, which reflects the

geometric shape and positional relationship between different objects. Note that when wall surfaces

have high emittance 𝜀𝑖 can be assumed to be equal to 1 [3], [4].

3.3.1. Different Scenarios examined in literature

In literature numerous studies have explored the potentials of analyzing the MRT distribution under

different scenarios and settings. The MRT values can provide valuable information regarding the

temperature distribution in both small and large indoor [3], [5] and outdoor spaces [4]. In [3], the

authors examined the MRT distribution in a small indoor space with dimensions 5 m × 3 m × 2.5 m.

Furthermore, in [5] they measure a wide range of MRT values to understand thermal comfort

conditions for a large indoor space. In particular, they conducted experiments in a dome stadium with

indoor dimensions 68 m × 160 m ×218 m (height × width × length). However, the MRT can be also

employed for large outdoor spaces. For instance, in [4], they estimate the MRT distribution in an

outdoor environment located in the teaching buildings district of Guangxi University (see Figure 13).

28

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 13. MRT distribution maps in a pedestrian space [4]

3.3.2. Mean Radiant Temperature Calculation using the IR camera

The methodology to estimate the MRT distribution of an indoor space consists of two major stages:

(1) calculating the view factors in every point of the room where MRT is to be calculated and (2)

measuring the surface temperatures with the IR camera.

3.3.3. Calculation of View Factors

As mentioned before, the view factor represents the fraction of the total radiation emanating from a
surface in all possible hemispheric directions across all possible wavelengths, as received by another
object of surface [3]. Deriving the view factors requires modeling the indoor space. In particular, the
view factor for a very small surface area on the wall, say 𝐴𝑖, from an arbitrary point in space (x, y, z)
can be estimated as

𝐹𝑝−𝑖 =
𝐴𝑖

′

4𝜋
 (2)

where 𝐴𝑖
′ is the projection of the surface area 𝐴𝑖 to the sphere of radius r=1, as shown in Figure 14.

Figure 14. View factors calculation

After that the projection area 𝐴𝑖
′ is calculated as follows

𝐴𝑖
′ =

𝐴𝑖𝑐𝑜𝑠𝜑

𝑥2 + 𝑦2 + 𝑧2
= 𝐴𝑖

𝑡

(𝑥2 + 𝑦2 + 𝑧2)
2
3

 (3)

where 𝑡 is the distance from the originating point to the wall. Note that the wall surface area 𝐴𝑖 should
be adequately small [3].

29

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Having for each surface 𝐴𝑖 the corresponding temperature provided from the IR camera, the MRT
distribution of the indoor space can be estimated by computing for several points in the indoor space
the view factors according to equation (2).

Figure 15. Modelled enclosed room [3]

3.3.4. Case study

Using 3D models of indoor spaces (e.g., Figure 15) and thermal images to estimate the surface

temperatures, our goal is to compute based on equation (1) the MRT distribution of industrial

environments by implementing small case trials according to the premises of the ISI. Based on the 3D

models of the under-examined space and the temperatures of the indoor surfaces provided by the IR

camera, our target is to derive detailed maps concerning the MRT distribution. Figure 16 provides an

example of these maps. Note that the surfaces can be divided into smaller surface areas 𝐴𝑖 (such as

50cm x 50cm, 25cm x 25cm, 10cm x 10cm, 5cm x 5cm) according to the temperature distribution on

the wall surfaces, thus providing more accurate results.

Figure 16. MRT distribution maps [3]. The wall surfaces are divided into smaller surfaces with different sizes to determine
the optimal value regarding the accuracy of the MRT calculation.

30

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

4. EDGE NODE SECURITY ASPECTS

Traditionally, the Industrial Control Systems (ICSs) that are employed to control an industrial process,

often referred to as Supervisory Control and Data Acquisition (SCADA) systems, are based on primitive

implementations lacking cyber-security considerations and practices. Reasons for this can be found in

the lack of interoperability between different vendors and/or the adoption of proprietary protocols

and data formats. Ensuring interoperability between platforms and devices has two major challenges,

i.e., their seamless operation and their security. The weakest link in this chain, from a cyber-security

perspective, are the endpoints on SCADA systems, i.e., the Programmable Logic Controllers (PLCs) with

their sensors and actuators. Not only is their firmware full of flaws with no regular update policy, but

also, many of the most popularly used communication protocols lack authentication or encryption [7].

In legacy industrial deployments, the isolation of the SCADA deployments had been a viable option,

however, in today's interconnected and technologically mobile world, true isolation is nearly

impossible. It is, therefore, crucial that in EnerMan we tackle edge node security aspects efficiently

since we are planning to collect data form the use case sites by interconnecting the edge nodes to the

targeted ICSs.

4.1. Attack Threat Model

Industry 4.0 and Smart manufacturing companies are subjectable to threats and attacks, which can

affect their production, infrastructure, personnel, and their operations in general. These threats and

attacks should be considered during the development of EnerMan and should be addressed during

design and implementation. Even if the manufacturers are not aware of them or think of them as a

second-class priority, these threats can disrupt their operations to such an extent, which could create

huge loss of revenue or even leave a whole country out of resources. Characteristic examples are the

disruption of the largest petroleum pipeline of the east coast by ransomware, and a major electricity

supplier in Johannesburg which was hit again by a ransomware, which resulted in leaving several

citizens without electricity.

ENISA developed guidelines about the security in Industry 4.0 and provided security measures, which

should be implemented for a factory to be considered secure. They provide a threat taxonomy, which

suits the needs of EnerMan, and we argue that EnerMan should address, at minimum, those threats,

and measures against them. There are several categories and threats which should be addressed.

Below we describe the most important ones, which should be considered during the implementation

of the project.

4.1.1. ICS threats

Denial-of-Service (DoS) is an attack meant to disrupt the availability of a machine or a network by

making it inaccessible to the legitimate users. DoS attacks flood the target with traffic which is

intended to deplete the resources of a machine or a network, so it cannot not process any legitimate

traffic and packets. In industry 4.0 a DoS attack can target Industrial Internet of Things (IIoT) systems

resulting in system unavailability and production shut down. Attackers could also take advantage of

many IIoT devices in industrial environments and create a botnet which can later be used to conduct

attacks on other infrastructures.

Malware is a piece of malicious software, normally a file or code, which is normally delivered through

the network, that infects, steals, monitors or conducts any function that an attacker desires. Usually,

an attacker uses a remote-control center to control the malware and it can later send commands to

perform unwanted actions. These actions may cause damage to an OT system, operational processes,

and related data. Ransomwares, viruses, trojan horses, and spyware are common examples of this

31

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

threat. Malwares can affect critical systems such as servers, IIoT devices, mobile devices, cloud

computing services etc.

Attackers may also try to modify unwanted and unauthorized data. By compromising OT or production

systems such as SCADA, they could alter and tamper data that play an important role in the decision-

making of the industry, which could result in inappropriate decisions based on false information. In

the same context is the threat of compromised personal and sensitive information. Attackers may try

to gain unauthorized access to personal devices or in the company’s cloud server to collect data about

the employees and their roles, their performance, their names, salaries etc. This is a privacy leakage

issue which could expose personnel information and hurt the trust of the company.

An attacker may try to gain access to an organization by using a brute force attack. The attacker

submits many passwords and passphrases with the goal of eventually guessing the correct one, so she

can log into the systems of the organization. Brute force is a common attack, which requires low to

nontechnical expertise to be conducted. It still poses a big problem among organizations especially

the ones that allow the utilization of uncomplicated or default passwords for industrial devices and

systems.

A man in the middle attack (MITM) is an attack where the perpetrator positions himself in the middle

of a channel between a user and an application in order to eavesdrop or to impersonate one of the

two parties. The attacker can just listen to exchanged messages in order to steal company’s sensitive

information such as passwords, credentials, confidential files, or can even modify and delete messages

to disrupt communication. This threat could have serious implications for the company since data

could be leaked, resulting in system compromisation, or the operations of the organization could be

disrupted by false messages transmitted by the attacker. In a similar context, another threat is the

communication protocol hijacking. In this attack the attacker takes control of an existing

communication session between two network components. This could lead to sensitive data leakage,

password leakage or other confidential information compromisation.

Network reconnaissance is the first part of any hacking operation. Attackers try to learn the target

environment that can help in the identification of potential attack vectors and exploits on potential

vulnerabilities. Reconnaissance efforts can be either passive or active. In passive reconnaissance the

attacker listens to the network and services without taking any actions in order to remain undetected.

On active reconnaissance, the attacker will actively send packets and communicate with devices and

resources, either by scanning or by connecting to them in order to collect as much information as

possible. In industry 4.0, such an attack could reveal internal network information like connected

devices, network protocols, open ports etc., which the attacker could later utilize to orchestrate an

attack to the organization.

4.1.2. Threat Agents

Threats sources for ICSs are located in various groups, including adversarial sources, such as foreign

governments, terrorists, competition spies, dissatisfied employees, malicious intruders, as well as

system errors and malfunctions, equipment errors or unintended events e.g., accidents and human

errors. Table 2 provides an overview of them.

Table 2: Adversarial Threats to ICS [8]

Threat Agent Description

Attackers
Attackers break into networks for the thrill of the challenge or for bragging

rights in the attacker community. While remote cracking once required a fair

amount of skill or computer knowledge, attackers can now download attack

32

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

scripts and protocols from the Internet and launch them against victim sites.

Thus, while attack tools have become more sophisticated, they have also

become easier to use. Many attackers do not have the requisite expertise to

threaten difficult targets such as critical U.S. networks. Nevertheless, the

worldwide population of attackers poses a relatively high threat of an isolated

or brief disruption causing serious damage.

Bot-network

operators

Bot-network operators are attackers; however, instead of breaking into

systems for the challenge or bragging rights, they take over multiple systems

to coordinate attacks and to distribute phishing schemes, spam, and malware

attacks. The services of compromised systems and networks are sometimes

made available on underground markets (e.g., purchasing a denial-of-service

attack or the use of servers to relay spam or phishing attacks).

Criminal groups

Criminal groups seek to attack systems for monetary gain. Specifically,

organized crime groups are using spam, phishing, and spyware/malware to

commit identity theft and online fraud. International corporate spies and

organized crime organizations also pose a threat. through their ability to

conduct industrial espionage and large-scale monetary theft and to hire or

develop attacker talent. Some criminal groups may try to extort money from

an organization by threatening a cyber attack

Foreign

intelligence

services

Foreign intelligence services use cyber tools as part of their information

gathering and espionage activities. In addition, several nations are aggressively

working to develop information warfare doctrines, programs, and capabilities.

Insiders

The disgruntled insider is a principal source of computer crime. Insiders may

not need a great deal of knowledge about computer intrusions because their

knowledge of a target system often allows them to gain unrestricted access to

cause damage to the system or to steal system data. The insider threat also

includes outsourcing vendors as well as employees who accidentally introduce

malware into systems. Insiders may be employees, contractors, or business

partners. Inadequate policies, procedures, and testing can, and have led to ICS

impacts. Impacts have ranged from trivial to significant damage to the ICS and

field devices. Unintentional impacts from insiders are some of the highest

probability occurrences.

Phishers

Phishers are individuals or small groups that execute phishing schemes in an

attempt to steal identities or information for monetary gain. Phishers may also

use spam and spyware/malware to accomplish their objectives.

Spammers

Spammers are individuals or organizations that distribute unsolicited e-mail

with hidden or false information to sell products, conduct phishing schemes,

distribute spyware/malware, or attack organizations (e.g., DoS).

Spyware/malware

authors

Individuals or organizations with malicious intent carry out attacks against

users by producing and distributing spyware and malware.

Terrorists
Terrorists seek to destroy, incapacitate, or exploit critical infrastructures to

threaten national security, cause mass casualties, weaken the economy, and

damage public morale and confidence. Terrorists may use phishing schemes or

33

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

spyware/malware to generate funds or gather sensitive information. Terrorists

may attack one target to divert attention or resources from other targets.

Industrial spies
Industrial espionage seeks to acquire intellectual property and know-how by

clandestine methods

4.1.3. Security Requirements

To counter the numerous threats that can target Industry 4.0 organizations as those that are

considered in the EnerMan project, security mechanisms have to be implemented in order to secure

their assets. Smart manufacturing companies should always keep an eye on the level of security and

practices they have in place, in order to minimize the threat level and ensure their continuous

operation. Below we describe in high level what are the minimum mechanism that we believe industry

4.0 should have in place in order to ensure its secure operations.

Security mechanisms need to be used to ensure the integrity and trust of the data and the devices.

Software needs to be verified before start running and ensure that is singed by the actual vendor and

not tampered. IIoT devices need to be authorized to run in the network and secure channels needs to

be utilized to ensure the integrity of the data and the connections. Cryptographic mechanisms should

be used to ensure the data integrity and security. Also, all the production data need to be monitored

either they are at rest or on transit to identify potential modifications.

Cloud infrastructure and data stored in the cloud should also be secured in various aspects. Types of

cloud utilized by the organization should take into consideration the laws and regulations of the cloud

provider’s country and points of presence. Single points of failure should be avoided, and critical

systems and applications should be identified, so a correct risk assessment can be made.

About the business continuity and recovery, the critical systems and processes should be identified to

determine the extent which they can influence the production. Risk assessments should be

performed, and procedures should be in place to define a plan in case of a security incident.

Communications between different machines should be secured either they operate inside the factory

or if they connect to the internet. Secure cryptographic algorithms should be used to provide

authentication, integrity and confidentiality between machines and private keys should be stored

securely in a server. Messages should be checked to ensure that they are not tampered or that they

are not replayed, and input validation should be in place to ensure that injection commands and cross-

site scripting (XSS) is avoided.

Data should be encrypted either they are on transit or at rest and should be categorized based on

their criticality. This should be the result of a risk analysis and risk assessment. Encryption and key

management should be utilized to ensure that not all users have access to the data and anonymization

of personal data should be in place whenever possible, to minimize security implications in case of a

security breach.

Access control policies should also be applied to ensure authentication of users and accounts, remote

access, and user privileges. Minimal level of authentication should be used across all different IIoT

devices. Multi-factor authentication should be used, and default password and usernames should be

avoided. The least privilege principle should be applied, and roles should be properly assigned to each

person. System users should have different accounts with different privileges, and access control

systems and Privilege Access Management solutions should be in place.

Correct security measures should be applied in the network and the protocols used in the factory.

Industrial plants networks should be based on pre-defined zoning model with establishment of DMZ

zones and control of traffic between zones. IIoT solutions should implement proven-in-use protocols

34

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

with known security capabilities, based on broadly accepted standards. Secure environments should

be secured for key exchange and key management and proper use of cryptography should be applied

to protect confidentiality, integrity and availability of data and information. The security should be

strong and insecure protocols should be avoided.

There also should be a monitoring system across the organization to detect anomalies and real-time

attacks. Security logs should be collected and analyzed and periodic reviews of network logs, access

control privileges and assets configurations should be conducted

4.1.4. Security Architecture

A high-level representation of the EnerMan security architecture is shown in Figure 17. Overall, its

purpose is twofold. On the one hand, it is aimed at preventing malicious activities from becoming

successful, i.e., it aims at reinforcing the flow data such that they become immune to infection by

malicious activity. The second involves the aspect of detection and, in this particular case, what we

have is a mechanism for picking out unwanted activity that has managed to become part of the data

flow.

The architecture consists of several levels, each of which correspond to a different part of a typical

system that is going to use the EnerMan framework. Hence, there is the Industrial Data, which

originate from the fringes of the architecture, e.g., sensor modules as edge devices in a factory, the

Secure Gateway that is a little further up the hierarchy, i.e., the edge node of the system, and, finally,

the cloud server.

At each of these points, as well as in-between, EnerMan is going to implement security features that

will setup a strong security mechanism. Hence, starting from the edge devices, EnerMan utilizes an

intrusion detection mechanism named I2DS. This is implemented on MPSoC technology using the

EnerMan edge/end node execution environment and is positioned right at the entry to the Data

Aggregator, also co-hosted at the MPSoC. The I2DS operates on the data that are flowing in from the

various edge devices used in the context of the various EnerMan use case providers’ industry setups.

Having filtered the data and flagged any potentially malicious activity, the data is then processed inside

the MPSoC by the data aggregator and, subsequently, it is encrypted for cyber-attack prevention

purposes.

The encrypted data are going to fulfil TLS secure session communication protocol requirements, which

will assist in the consolidation of a prevention mechanism between the MPSoC (edge devices) and

Gateway (edge node) layers of the architecture. Just prior to the introduction of the MPSoC data into

the gateway, a second Intrusion Detection System (IDS) mechanism is deployed. Hence, a detection

mechanism just prior to the EnerMan gateway ensures that the encrypted data have indeed not been

corrupted. Subsequently, an Intrusion Prevention System (IPS) mechanism follows on the IDS-

processed data at the gateway-level of the architecture.

Hence, and similar to the security steps followed at the EnerMan edge/end node MPSoC, the EnerMan

gateway(s) will encrypt the data that are to be propagated further up the architecture, i.e., the

EnerMan cloud devices, by ensuring that the TLS protocol standards are met for prevention purposes

in the context of edge node and cloud communication.

35

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 17. The EnerMan Security Architecture

4.2. Security Mechanisms

4.2.1. Cybersecurity Attack Detection

I2DS: Industrial Intrusion Detection System

I2DS is the EnerMan intrusion detection mechanism that will be deployed across the system and at its

very edges, i.e., it is the intrusion detection mechanism that will operate on the data coming in from

the architecture’s edge devices. I2DS is going to be hosted by the EnerMan edge/end node MPSoC

devices, which are devices that employ FPGA technology. Hence, this first layer of intrusion detection

capability is going to be implemented directly on (reconfigurable) hardware using the EnerMan

edge/end node execution environment described in Section 2.

Specifically, I2DS consists of optimized modules that implement machine learning models for intrusion

detection. The modules use rules for string searching that are appropriate for the industrial

environments’ data. The implementation of the ML model’s architecture is to be developed using

suitable frameworks so that the final design not only fulfills the functional criteria of the ML model,

but it also offers satisfactory performance, such as a high data throughput at the cost of reduced

power consumption requirements.

IDS: Intrusion Detection/Prevention Systems

Intrusion detection systems (IDS) are systems that monitor network traffic for suspicious activity and

alerts when such activity is discovered whereas Intrusion Prevention Systems (IPS) have a more

extended operation by including prevention function when an intrusion is identified. Both IDS and IPS

system exploit mechanisms for identify anomalies in the network traffic varying form pattern

matching to advanced machine learning and deep learning techniques aiming to increase their

detection accuracy. Machine learning methods and Deep Learning methods can automatically

discover the essential differences between normal data and abnormal data with high accuracy. In

addition, machine learning methods have strong generalizability, so they are also able to detect

unknown attacks. Intrusion detection systems that can be trained using a baseline (i.e., normal system

behavior), to identify anomalous events (e.g., behaviors differing from the baseline). This type of

36

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

anomaly IDS can also monitor network traffic and be trained to recognize malicious streams of packets

based on known attack streams.

For the communication between EnerMan’s edge/end node (acting as data aggregator) and the rest

of the framework we consider deploying a lightweight IPS solution to provide a detection mechanism

augmenting the total security posture of the offered solution.

SNORT2 is a network-based intrusion detection system that is an open-source software than can be

used as an IDS/IPS, as well as a real time network sniffer. Its basic usage can be as follows:

● Sniffer Mode: to collect and printout TCP/IP network header information.

● Packet Logging: to store network traffic packets that can be further analyzed later on (e.g., for

forensic investigation).

● Active Network intrusion detection mode: to create alerts, when possible, intrusions are

detected.

The intrusion detection is based upon specific rules that have to be setup in snort deployment to

match the used case needs. Each of those rules consists of two logical parts:

● Rule header: contains the rule's action, protocol, source and destination IP addresses and

netmasks, and the source and destination ports information.

● Rule options: contains alert messages and information on which parts of the packet should

be inspected to determine if the rule action should be taken.

SNORT has the ability to detect probes or attacks, including, but not limited to, operating system

fingerprinting attempts, semantic URL attacks, buffer overflows, server message block probes, and

stealth port scans. SNORT rules use signatures to define attacks. These signatures are specifically

designed to detect known exploits as they contain distinctive marks, such as ego strings, fixed offsets,

debugging information, or any other unique marking that may or may not be related to actually

exploiting a vulnerability. Snort will receive packets and process them through preprocessor and

compare these packets against the set of rules. The output will log or trigger alerts based on what

action the rules will take. An abstracted architecture of SNORT operation is given in Figure 18.

Figure 18. Logical representation of SNORT architecture flow

4.2.2. Cybersecurity Attack Prevention

Secure Gateway

The purpose of the secure gateway is to provide authorization and authentication mechanism to the

data aggregator in order to be able to send the aggregated date to the EnerMan framework. A way to

2 https://www.snort.org/

37

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

do this is to add to REST services and request to REST APIs an authentication and authorization layer.

The API authentication can be performed in three ways:

1. Based on user credentials

2. Based on tokens that are created by OAuth common flows.

3. Based in certificates

The first method is less secure where the third one required the creation and maintenance on

certificate by a trusted certificate authority. Thus, for the EnerMan data aggregator need the second

one seems to be more appropriate.

OAuth 2.0

OAuth 2.03 is a widely adopted and the industry standard protocol for authorization. Its specification

and its extensions are being developed and maintained by the IETF OAuth Working Group. OAuth 2.0

aims to provide a simple solution for client development while providing specific authorization flows

for client applications such as web applications, desktop applications, mobile phones, wearables etc.

and living room devices. It can enable a third-party application to obtain limited access to an HTTP

service, either on behalf of a resource owner by orchestrating an approval interaction between the

resource owner and the HTTP service, or by allowing the third-party application to obtain access on

its own behalf. It should be noted that OAuth is able to provide authorization both in human to

machine and machine to machine communications.

OAuth2.0 specification describes four different roles:

1. Resource owner: An entity capable of granting access to a protected resource. When the

resource owner is a person, it is referred to as an end-user.

2. Resource server: The server hosting the protected resources, capable of accepting and

responding to protected resource requests using access tokens.

3. Client: An application making protected resource requests on behalf of the resource owner

and with its authorization.

4. Authorization server: The server issuing access tokens to the client after successfully

authenticating the resource owner and obtaining authorization

The OAuth specification work defines a variety of grant types for different use cases such as

Authorization Code, PKCE, Client Credentials, Device Code, Refresh Token

3 https://oauth.net/2/

38

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 19. OAuth authentication and authorization flow

An OAuth2 flow is drafted in Figure 19. This flow describes the interaction between the four different

defined roles in the specification:

● The client requests authorization from the resource owner.

● The client receives an authorization grant, which is a credential representing the resource

owner's authorization, expressed using one of the four authorization grant types.

● The client requests an access token by authenticating with the authorization server and

presenting the authorization grant.

● The authorization server authenticates the client and validates the authorization grant, and if

valid, issues an access token.

● The client requests the protected resource from the resource server and authenticates by

presenting the access token.

● The resource server validates the access token, and if valid, serves the request

OpenID Connect

OpenID Connect4 is an interoperable authentication protocol based on the OAuth 2.0 family of

specifications. This protocol provides to clients a tool to verify their or the End-User’s identity based

on the authentication performed by an Authorization Server, as well as to obtain basic profile

information about the End-User in an interoperable and REST-like manner. It uses straightforward

REST/JSON message flows. It allows developers to authenticate their users across websites and apps

without having to own and manage password files. Also, it allows for clients of all types, including

browser-based JavaScript and native mobile apps, to launch sign-in flows and receive verifiable

4 https://openid.net/connect/

39

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

assertions about the identity of signed-in users. OpenID Connect uses the ID token data structure that

enable end-users or applications to be authenticated. The ID token has a JSON Web Token (JWT)

format, which is a standard way to generate authentication tokens. The JWT contains various user

information which are called claims. Also, it contains information about the validity of the token, such

as issue datetime, expiry period etc. The token is normally signed by the token issuer with the issuer's

public key to be easily verified using Public Key Infrastructure (PKI).

Encryption

The backbone of any security mechanism that prevents cybersecurity attacks as those are described

in the beginning of section 4 is to enforce cryptography operations on the data that are stored or are

in transit. Given that several cryptographic operations are computationally intensive and resource

hungry (especial the Public Key cryptography operations), mechanisms to efficiently implement such

operations are needed. For this reason, the full functionality of the EnerMan edge/end node execution

environment is used that involves hardware reconfigurability. This is manifested by the

implementation of specific cryptography/security operations as hardware IP cores in the FPGA fabric

of the node MPSoC.

The cyberattack prevention security mechanisms that are deployed on the EnerMan edge/end node

(acting as data aggregator) are realized mostly using a hardware security token (HST) that is

implemented on top of the EnerMan edge/end node execution environment. The overall structure of

the HST can be seen in Figure 20. The HST is able to provide a series of security primitive services that

include cryptography key generation for symmetric key and asymmetric key cryptography algorithms

(like AES, CHACHA in various modes and Elliptic Curve cryptography) but also for quantum safe

cryptography algorithms that will guarantee a high level of security even against quantum computer

based cyberattacks. For the above algorithms the HST provides encryption and decryption capabilities

as well as generation, signing and verification of digital signatures. Furthermore, the HST is able to

securely store in special, protected storage structures sensitive security keys and also offer secure

storage of pilot data. Apart from that the functionality of the HST can be linked with the detection

mechanisms described in the previous subsections where the I2DS tool can act as a security

sensor/agent for possible attacks on the HST itself or the pilot data collected by the EnerMan edge/end

node. The HST also has an event logging mechanism that is capable of reporting to other security

modules (e.g., the security gateway) security events that have being detected by the security

sensors/agents.

Finally, given the cryptography capabilities of the HST, the token can offer highly secure quantum safe

TLS 1.3 functionality that can secure the transmission of data leaving the EnerMan edge/end node.

This can be applicable in all the applications (the EnerMan software agents) that are currently been

realized in the edge/end node including the federated learning realization (securely transmitting client

local models to the federated learning server).

40

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 20 Hardware Security Token edge-node cryptography based cyberattack prevention setup

41

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

5. DEMONSTRATION REPORT

5.1. Execution Environment Hardware accelerated application Demonstration

To create and operate the hardware assisted EnerMan edge node execution environment on the Xilinx

MPSoC edge board with an integrated FPGA fabric, we are using the Xilinx toolbox for designing and

implementing functionality for the Processor System (PS) and the FPGA Programmable Logic (PL) of

the Xilinx MPSoC. More specifically we are using the Xilnx Vitis toolbox (version 2021.1 and 2021.2).

The developed EnerMan execution environment on the two used embedded system board (Xilinx

ZCU104 and ULTRA96 boards) supports the PetaLinux OS and the ZoCL/Xilinx RunTime (XRT) drivers

for deploying hardware accelerators in the PL but also the PYNQ python library (developed by Xilinx)

that enables to deploy on the PL through python scripts (using the concept of PYNQ overlays).

Initially, in this demonstration report, we show in detail the overall workflow that we used to create

the relevant EnerMan execution environment to support the above functionality. After that, we show

how the EnerMan execution environment can be used to deploy a custom hardware accelerated

simple application (a matrix multiplication) through python using the PYNQ overlay capabilities of the

platform Xilinx ZCU104.

5.1.1. Platform Creation with Linux system

The current flow consists of creating a platform project using Xilinx’s Vivado tool5, a tool that creates

customized hardware to be deployed in the FPGA fabric of the Xilinx MPSoC chip, that contains all the

hardware information required by the Vitis HLS tool. The next step is to setup the OS that will run on

the specific embedded system based on the hardware information, in our case the PetaLinx OS. Finally,

we import both inputs from Vivado and the OS setup into VITIS and develop our application and build

the final solution.

The output from VITIS contains the boot components, the .xclbin file containing the IP core and

application executable that runs on the device’s CPU. We can then write these on an SD-card, boot up

the embedded device and run the application, or if the SD-card is already setup, simply deploy the

.xclbin file and the application executable on the device and run the application.

What follows is a general flow to create a VITIS application as discussed previously. Appendix I provides

a more detailed tutorial of the flow.

Vivado project creation and. XSA export

As discussed, our first step to build our platform for our application is to create a project in

the Xilinx Vivado tool with our underlying hardware, connecting our peripherals and other

basic components (e.g., AXI buses, interrupt controllers, platform interface etc.).

We are using a Xilinx ZCU104 design from Xilinx for our hardware description6 and export the

corresponding .XSA file which contains all needed information for our board, hardware, and

5 https://www.xilinx.com/products/design-tools/vivado.html
6 https://github.com/Xilinx/Vitis-Tutorials/tree/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104

https://www.xilinx.com/products/design-tools/vivado.html
https://github.com/Xilinx/Vitis-Tutorials/tree/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104

42

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

its internal connections. Xilinx provides specific automated TCL scripts that creates7 the design

and export8 the generated XSA file.

The output of Vivado that will be used in the following steps is the generated XSA file.

PetaLinux project creation

The next step is to setup the appropriate PetaLinux OS for the hardware design that we have

generated. A PetaLinux-project can be created using the Xilinx tools.

For this project we aim to create a Linux system which will contain also the PYNQ-overlay and

all other components that are needed for a hardware accelerated application to run.

At this stage, we must create a PetaLinux project and import the .XSA file generated by Vivado

and designate the target device. After that we have to modify the root file system of the

PetaLinux source files with all the necessary packages for XRT, PYNQ and any other required

libraries. The last actions are the modifications of the kernel, updating the device tree based

on the .XSA file and adding support for the EXT4 filesystem required for VITIS acceleration

designs.

Once everything is finished, we build the PetaLinux OS image and create a BIF file that

describes all the boot components, which will be required by VITIS.

Vitis platform creation

We need to import now our platform into the Xilinx Vitis tool, to create an application based

on our device with the Linux system we created.

First we need to create a platform project using the .XSA and provide the necessary files from

the PetaLinux OS we have created. After we can create a Vitis application on the Vitis platform

In our demo we are using a Vitis-application example vector addition from the Xilinx template

library, based on the platform we created. We built the application and got the boot

components and .xclbin file and application executable.

5.1.2. Python script to run

In order to run our PYNQ-overlay in python we need to import Overlay and Xlnk from PYNQ

library. Also we will need the setitem from Operator library and the numpy library, in order to

import/export our inputs/outputs to and from the kernel.

7 https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-

ZCU104/ref_files/step1_vivado/system_step1.tcl
8 https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-
ZCU104/ref_files/step1_vivado/export_xsa.tcl

https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/system_step1.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/system_step1.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/export_xsa.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/export_xsa.tcl

43

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 21. Python code for executing the vadd application and IP core

Initially we load in an Overlay object our .xclbin, then we can search for our IP in this object.

After finding our IP, we need to load the specific IP (in our case krnl_vadd_1 IP). We can see

in our terminal the output of our kernel’s register map:

• CTRL signal which contains AXI-interface control signal

◦ AP_START: setting to 1 initiates the kernel-execution, otherwise not

◦ AP_DONE: if 1 indicates that the application is executed successfully (this signal is

output for 1 clock period)

◦ AP_IDLE: if 1 indicates that the kernel is not running, otherwise if 0 indicates that

the kernel is still running

◦ AP_READY: if 1 indicates that the kernel is ready to accept input, otherwise not

◦ AUTO_RESTART: if 1 indicates that the kernel will re-run after the end of each

execution, otherwise if 0 it will stall and wait for new AP_START =1 signal.

• in1, in2: our stream-inputs to the kernel

44

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

• out_r: our stream-output from the kernel

• size: the length of our inputs/outputs

We can set the values of register_map object to our desired values. In our case size variable is

set to N, which is the number of elements that we will insert into the AXI-stream inputs in1,in2

and our output out_r . To do this we need to reserve continuous memory for our I/O. We can

achieve this by using the allocate function, setting the number of elements N and the bit-

width of each elements (in our case 32-bit integers), which outputs an address that we will

assign to our register-map elements in1,in2 and out_r . Then we can set the values on each

allocation by using the setiitem function.

After completing all the above we can start our kernel execution by setting the value of

AP_START to 1. When AP_DONE signal gets to 1, this means our kernel execution has finished,

and we can see the outputs on our terminal captures bellow. We can see that the vector

addition has been completed successfully. First two array prints are our inputs in1 and in2

respectively. The third one is our output array before execution. The last output array is our

out_r array after execution, correctly adding in1 and in2 inputs.

Figure 22. Terminal output of the register map

45

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 23. Terminal output of the final output of vadd

5.2. Intelligent Data Processing Demonstration using software reconfiguration

Edge devices can become the entry and disaggregated point of initial computation for data processing

and harmonization. One probably issue that may arise is the specialized Operating System (OS) that

these devices support such as PetaLinux, which does not support any package manager and is hard to

support updated modules and libraries.

One solution to alleviate this problem is to use Docker. Docker can create containers based on the

device’s processor architecture, since Docker shares the kernel of the host machine and therefore not

all images can be run and use any kind of OS such as Ubuntu that can be hosted on that processor. In

such OSes package managers can be made use of to install all relevant libraries. Containers are also

46

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

lightweight can run on such devices and require only the necessary diskspace, memory and CPU

resources.

To this end, this demo showcases the use of Docker containers on an Ultra96v2 device that acts as the

EnerMan intelligent node. The Ultra96v2 board (similarly to the Xilinx ZCU104 board that is used in

the previous demo) hosts a Xilinx Zynq UltraScale+ MPSoC ZU3EG chip that has an A484 Arm processor

with 2 GB (512M x32) LPDDR4 Memory and a 16 GB microSD card. We have performed this demo on

the Ultra96v2 board that has deployed the full EnerMan edge node capabilities (as those are described

in section 2 of this deliverable) and aim to demonstrate the usage of the EnerMan execution

environment for edge intelligence processing on top of the PetaLinux OS. Using the Docker container

capabilities for software flexibility we can elevate the various constrains of the PetaLinux OS and offer

support for widely used python-based ML libraries (eg. PyTorch)

Figure 24. The ULTRA96 Board that is used in this Demo

The application to run on the Docker container is a small neural network (for more details see section

3.2.8) comprised of 4 layers, two convolution layers and two fully connected layers written in Pytorch.

The main concept is that we will have multiple Ultra96v2 (local clients) running, each training on a set

of data (local data) that will be provided by the EnerMan pilots and updating its local model. After

that, the results (updated models) of these training will be sent to a central server which will collect

all the distributed neural network configurations and aggregate them into a global model. The above

scenario forms the basis of the federated learning scheme that is described in section 3 of this

deliverable (performing deep anomaly detection) where the server and the multiple Ultra96v2 work

jointly without sharing local data.

As our solutions are not currently part of a public Docker repository, we initially have to write a

Dockerfile that will perform the building of the docker by downloading the relevant docker base OS

and then perform a number of actions that will set up the container to be ready and compatible to

run our application. The following code is the used Dockerfile:

47

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

#define base
FROM ubuntu:20.04
#Update and upgrade
RUN apt-get update
RUN apt-get dist-upgrade -y
RUN apt-get install -y apt-utils git vim
#Install python
RUN apt-get install -y python3 python3-pip
RUN pip3 install --upgrade pip
RUN pip3 install pandas
RUN pip3 install sklearn
RUN pip3 install torch torchvision torchaudio torchtext torchcsprng -f
https://torch.kmtea.eu/whl/stable.html

#Create directory
RUN mkdir /script
#Set temp workdir
WORKDIR /script/
#Get the files in the script folder
COPY ./anomaly_detection_script.py /script/
COPY ./data.csv /script

When building this container, the build process will pull the ubuntu 20.04 distribution, update and

upgrade it and install all relevant libraries, such as python3, pip3 and using pip3 install all python

modules required for the training of the neural network. Finally, this Dockerfile copies the python

script and the relevant data for training.

We start the build process by executing the following command in the same directory we have all the

necessary files, the Dockerfile, the python script and the data:

docker build -t nnedgetrain .

The process begins by performing all the steps in the Dockerfile, such as the following images:

48

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

After the build has been completed the container can be started with the following command:

docker run -it nnedgetrain /bin/bash

This command will start up the container at the working directory defined in the Dockerfile and

provide bash script.

49

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

We can now start up the training script and wait for it to finish. Since the Ultra96v2 does not have too

much processing power, it takes some time to complete.

5.3. AI Industrial Intrusion Detection Security Demo

This section describes the main steps involved in the development of the MPSoC-hosted EnerMan

intrusion detection mechanism, namely the Industrial Intrusion Detection System (I2DS). The process

is based upon the FINN9 framework provided by Xilinx. The goal of the I2DS is to identify, in near real-

time, possible attacks in an industrial environment by using Machine-Learning (ML) based techniques.

The overall development process described here has been an expansion on the original presented in

[8].

5.3.1. Board set up

For this demo we are using PYNQ, which is an open-source initiative that facilitates the use of Xilinx

hardware devices, such as the EnerMan MPSoC. PYNQ offers and supports python productivity

bootable images that can be used on a variety of Xilinx development boards, which host the Zynq

MPSoC, e.g., PYNQ-Z1, PYNQ-Z2 and ZCU104. In addition, using the PYNQ python library we can deploy

on the reconfigurable hardware of the MPSoC using python scripts. In this demo we use the ZCU104

evaluation board.

5.3.2. Set up the host

The training phase is conducted on a host PC using the Xilinx FINN docker container with all the tools

and libraries for training the target AI model. Xilinx provides jupyter notebooks within the docker for

easier development. The host also needs Xilinx Vivado HLS installed, for the generation of the bitfile

9 https://xilinx.github.io/finn/

50

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

that will be downloaded into the reconfigurable part (Programmable Logic (PL)) of the MPSoC, that is

linked with the docker container. To run the docker we just have to run on the host the command

./run-docker.sh notebook.

5.3.3. Train a quantized MLP with Brevitas

Quantize the dataset

The first step for a Quantized Neural Network (QNN) training is to binarize the dataset. In this demo

we are using the TON_IoT modbus dataset created by the UNSW Sydney. This can be achieved with a

python script called dataloader_quantized.py. This script drops irrelevant columns of the dataset such

as date, time and the type of the attack and binarizes all the useful data for the training and keeps the

label that shows if we have an attack or not for this data. With this dataset, for every input of four

integers and one label, the dataloader creates 111 bits. The final quantized dataset is saved in a NumPy

compressed format (.npz). This script also divides the dataset into training dataset (~80%) and test

dataset (~20%).

Define and train the QNN with Brevitas

For the training phase we use the quantization-aware training (QAT) capabilities offered by Brevitas.

Brevitas is a PyTorch research library for quantization-aware training. Our MLP has four fully

connected (FC) layers in total: three hidden layers with 64 neurons, and a final output layer with a

single output, all using 2-bit weights. We also use 2-bit quantized Rectified Linear Unit (ReLU)

activation functions and apply batch normalization between each FC layer and its activation. The

number of epochs is 15 and the learning rate 0.01. The notebook gives us post-training information

about the training loss and test accuracy. The final test accuracy of the model is 0.912248.

Figure 25. Training loss per iteration

51

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 26. Test accuracy per iteration

Export ONNX model

Before exporting, we can make some changes to our trained network (network surgery). In this case

we are padding the input. Our input vectors are 111-bit. For easier parallelization of the first layer, we

add a 0-valued column to work with an input size of 112 instead. The FINN compiler expects an ONNX

model as input. ONNX is an open format built to represent machine learning models and the output

of our model is presented below.

52

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 27. The exported ONNX model in Netron

5.3.4. Import model into FINN and compare it with Brevitas execution

The wrapper around the ONNX model provides several helper functions, so we can extract information

about the structure and properties of the model. Before the comparison with the Brevitas execution,

we need to prepare our FINN-ONNX model. With the Graph transformations in FINN we transform the

model into a synthesizable hardware description. Finally, we can compare the two models by calling

our inference helper functions for each input and comparing the outputs.

5.3.5. Synthesis of the accelerator and generation of the bitfile

In this step we use the FINN compiler to generate an FPGA accelerator with a streaming dataflow

architecture from our QNN. With the use of the Vivado HLS we map all the layers of the model into

hardware description. Hence, we create a hardware architecture with parallel layers that are

connected with FIFOs to a full accelerator. Because the synthesis phase is time consuming, we always

test our architecture rtl simulation.

53

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

Figure 28. The steps towards the bitfile generation

Figure 29: Block design architecture in Vivado

The final output of this process is the bitfile (and the accompanying .hwh file) that will be downloaded

to the board. To test the accelerator on the board, we put a copy of the dataset and a premade python

script that validates the accuracy into the driver folder, then make a zip archive of the whole

54

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

deployment folder. Finally, we send the zip folder to the board and run the commands below for

testing our accelerator.

unzip deploy-on-pynq.zip -d finn-I2DS-demo

cd finn-I2DS-demo/driver

sudo python3.6 -m pip install bitstring

sudo python3.6 validate_TONIoT.py --batchsize 1000

Figure 30. Terminal Output

55

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

6. CONCLUSION

In this deliverable, the preliminary research, design, and implementation activities of T2.1 and T2.4 as

well as some indicative applications of T2.2 have been presented. The execution environment of the

EnerMan edge/end node is described and the overall architecture to support it is presented. Also, a

series of demonstration scenarios have been provided showing how the execution environment can

be used. Also, some indicative application activities that are been implemented on top of the EnerMan

edge/end node execution environment are demonstrated. Currently, the work performed in WP2 is

in progress and the reported activities in this deliverable are going to be enhanced and refined further

till the close of the WP2 work in M18.

56

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

7. REFERENCES

[1] Zhu, H., Xu, J., Liu, S., & Jin, Y. (2021). Federated learning on non-IID data: A survey.
Neurocomputing, 465, 371–390. https://doi.org/10.1016/J.NEUCOM.2021.07.098

[2] McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A., 2017a. Communication-efficient
learning of deep networks from decentralized data, in: Artificial Intelligence and Statistics, pp.
1273–1282.

[3] Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S., 2019. Federated learning with
personalization layers. arXiv preprint arXiv:1912.00818.

[4] Ghosh, A., Chung, J., Yin, D., Ramchandran, K., 2020. An efficient framework for clustered
federated learning. arXiv preprint arXiv:2006.04088.

[5] Brkovic, A., Gajic, D., Gligorijevic, J., Savic-Gajic, I., Georgieva, O., & Di Gennaro, S. (2017). Early
fault detection and diagnosis in bearings for more efficient operation of rotating machinery.
Energy, 136, 63–71.

[6] Zhang, W., Li, X., Ma, H., Luo, Z., & Li, X. (2021). Federated learning for machinery fault diagnosis
with dynamic validation and self-supervision. Knowledge-Based Systems, 213, 106679.
https://doi.org/10.1016/j.knosys.2020.106679.

[7] Y. Xu, Y. Yang, T. Li, J. Ju and Q. Wang, "Review on cyber vulnerabilities of communication
protocols in industrial control systems," 2017 IEEE Conference on Energy Internet and Energy
System Integration (EI2), 2017, pp. 1-6, doi: 10.1109/EI2.2017.8245509.

[8] The National Institute of Standards and Technology, Guide to Industrial Control Systems (ICS)
Security, Special Publication 800-82

[9] Le Jeune, Laurens, Toon Goedemé, and Nele Mentens. "Towards real-time deep learning-based
network intrusion detection on FPGA." International Conference on Applied Cryptography and
Network Security. Springer, Cham, 2021.

https://doi.org/10.1016/j.knosys.2020.106679

57

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

APPENDIX 1. ENERMAN EXECUTION ENVIRONMENT CREATION WORKFLOW

This appendix provides a detailed tutorial on how to create a VITIS application.

Vivado project creation and. XSA export

As discussed, our first step to build our platform for our application is to create a project in

the Xilinx Vivado tool with our underlying hardware, connecting our peripherals and other

basic components (e.g. AXI buses, interrupt controllers, platform interface etc.).

We are using a Xilinx ZCU104 design from Xilinx for our hardware description10 and export the

corresponding .XSA file which contains all needed information for our board, hardware and

its internal connections. Xilinx provides specific automated TCL scripts that creates11 the

design and export12 the generated XSA file.

The output of Vivado that will be used in the following steps is the generated XSA file.

PetaLinux project creation

Next, we will need to setup the appropriate PetaLinux OS for the hardware design that we

have generated. A PetaLinux-project can be created using the Xilinx tools.

In this project we aim to create a Linux system which will contain PYNQ-overlay and all other

components that are needed for a hardware accelerated application to run. At this stage, we

do the following steps:

1. Create the PetaLinux project based on zynqMP template.
petalinux-create –type project –template zynqMP –name zcu104_custom_plnx

2. Import .XSA file created via Vivado-project.
petalinux-config –get-hw-description=<xsa_directory>

3. Configure device tree with a template of zcu104 by selecting the DTG settings and
modifying it to the device, in this case zcu104-revc.

4. Modify our Root File System that originally includes the PetaLinux source files:
a. Append the CONFIG_x lines below to the

<your_petalinux_project_dir>/project-spec/meta-user/conf/user-
rootfsconfig file.

I. Packages for base XRT support by appending
` CONFIG_packagegroup-petalinux-xrt `:

i. packagegroup-petalinux-xrt is required for Vitis acceleration
flow. It includes XRT and ZOCL.

ii. xrt-dev is required in 2020.1 even when we're not creating a
development environment due to a known issue that a soft link
required by the deployment environment is packaged into it.
XRT 2020.2 fixes this issue.

10 https://github.com/Xilinx/Vitis-Tutorials/tree/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104
11 https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-

ZCU104/ref_files/step1_vivado/system_step1.tcl
12 https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-

ZCU104/ref_files/step1_vivado/export_xsa.tcl

https://github.com/Xilinx/Vitis-Tutorials/tree/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/system_step1.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/system_step1.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/export_xsa.tcl
https://github.com/Xilinx/Vitis-Tutorials/blob/2020.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/ref_files/step1_vivado/export_xsa.tcl

58

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

II. Packages for easy system management by appending
` CONFIG_dnf
 CONFIG_e2fsprogs-resize2fs
 CONFIG_parted
 CONFIG_resize-part `

i. dnf is for package package management
ii. parted, e2fsprogs-resize2fs and resize-part can be used for ext4

partition resize.
III. Packages for PYNQ-overlay

`CONFIG python3-pynq
 CONFIG python3-audio
 CONFIG python3-pillow
 CONFIG pynq-overlay
 CONFIG libstdc++ `

i. Python3pynq is need in order to import PYNQ libraries
ii. Audio and pillow are dependencies for PYNQ library
iii. PYNQ-overlay imports the device drivers for PYNQ-overlay
iv. Libstdc++ is needed in order to OpenCL-applications

b. Enable selected rootfs packages
I. Run ` petalinux-config -c rootfs `

II. Select User Packages
III. Select name of rootfs all the libraries listed above

5. Modify kernel
a. CPU IDLE would cause processors get into IDLE state (WFI) when the processor

is not in use. When JTAG is connected, the hardware server on host machine
talks to the processor regularly. If it talks to a processoring IDLE status, the
system will hang because of incomplete AXI transactions. So, it is
recommended to disable the CPU IDLE feature during project development
phase. It can be re-enabled after the design has completed to save power in
final products.

I. Launch kernel config: ` petalinux-config -c kernel `

II. Ensure the following items are TURNED OFF by entering 'n' in the []
menu selection:

III. CPU Power Management > CPU Idle > CPU idle PM support
IV. CPU Power Management > CPU Frequency scaling > CPU Frequency

scaling
V. Exit and save.

6. Update the Device tree: The device tree describes the hardware components of the
system. Xilinx device tree generator (DTG) can generate the device tree according to
hardware configurations from XSA file. User needs to add customization settings in
system-user.dtsi for PetaLinux to consume if there are any settings not available in XSA,
for example, any driver nodes that don't have a corresponding hardware, or if user
need to override any DTG auto-generated configurations.
ZOCL driver module is such a module that has no associated hardware, but it's required
by Vitis acceleration flow. It's a part of Xilinx Runtime (XRT). We will add it to the
system-user.dtsi.
We will also override axi_intc_0's parameter interrupt inputs numbers from 0 to 32

59

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

because there was nothing connected to the interrupt controller in the XSA, but there
will be after v++ links the kernel.

a. Append the following contents to the project-spec/meta-user/recipes-
bsp/device-tree/files/system-user.dtsi file.

`&amba {

 zyxclmm_drm {

 compatible = "xlnx,zocl";

 status = "okay";

 interrupt-parent = <&axi_intc_0>;

 interrupts = <0 4>, <1 4>, <2 4>, <3 4>,

 <4 4>, <5 4>, <6 4>, <7 4>,

 <8 4>, <9 4>, <10 4>, <11 4>,

 <12 4>, <13 4>, <14 4>, <15 4>,

 <16 4>, <17 4>, <18 4>, <19 4>,

 <20 4>, <21 4>, <22 4>, <23 4>,

 <24 4>, <25 4>, <26 4>, <27 4>,

 <28 4>, <29 4>, <30 4>, <31 4>;

 };

};

&axi_intc_0 {

 xlnx,kind-of-intr = <0x0>;

 xlnx,num-intr-inputs = <0x20>;

};

&sdhci1 {

 no-1-8-v;

 disable-wp;

};`

• zyxclmm_drm node is required by Zocl driver.

• axi_intc_0 node overrides interrupt inputs numbers from 0 to 32, set interrupt
kind to level high.

• sdhci1 node decreases SD Card speed for better card compatibility on ZCU104
board. This only relates to ZCU104. It's not a part of Vitis acceleration platform
requirements.

7. Add EXT4 rootfs support

It's recommended to use EXT4 for Vitis acceleration designs. PetaLinux uses initramfs
format for rootfs by default, it can't retain the rootfs changes in run time. Initramfs
keeps rootfs contents in DDR, which makes user useable DDR memory reduced. To
make the root file system retain changes and to enable maximum usage of available
DDR memory, we'll use EXT4 format for rootfs in second partition while keep the first
partition FAT32 to store the boot files.

Vitis-AI applications will install additional software packages. If user would like to run
Vitis-AI applications, please use EXT4 rootfs. If in any case initramfs would be used,
please add all Vitis-AI dependencies to initramfs.

60

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

1. Let PetaLinux generate EXT4 rootfs

• Run `petalinux-config`

• Go to Image Packaging Configuration

• Select Root File System Type as EXT4

• Append ext4 to Root File System Formats

• Exit and save.

2. Let Linux use EXT4 rootfs during boot

The setting of which rootfs to use during boot is controlled by bootargs. We would
change bootargs settings to allow Linux to boot from EXT4 partition. There are
various ways to update bootargs. Please take either way below.

• Run `petalinux-config`

• Change DTG settings -> Kernel Bootargs -> generate boot args automatically
to NO and update User Set Kernel Bootargs to

`earlycon console=ttyPS0,115200 clk_ignore_unused

root=/dev/mmcblk0p2 rw rootwait cma=512M. `

Click OK, exit thrice and save.

3. Note:

• root=/dev/mmcblk0p2 means to use second partition of SD card, which is
the EXT4 partition.

• Please note that we also set these options in bootargs:

1. clk_ignore_unused: it tells Linux kernel don't turn off clocks if this
clock is not used. It's useful clocks that only drives PL kernels because
PL kernels are not represented in device tree.

2. cma=512M: CMA is used to exchange data between PS and PL kernel.
The size for CMA is determined by PL kernel requirements.

8. Build PetaLinux Image

a. From any directory within the PetaLinux project, build the PetaLinux project

` petalinux-build `

The PetaLinux image files will be generated in /images/linux directory

b. Create a sysroot self-installer for the target Linux system

`petalinux-build --sdk `

The generated sysroot package sdk.sh will be located in images/Linux

directory. We’ll extract it by running `sdk.sh` in a terminal and have a sysroot

folder in images/Linux directory.

61

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

9. Create BIF (linux.bif) to describe boot components

a. Add a BIF file (linux.bif) to the <full_pathname_to_zcu104_custom_pkg>/pfm/boot
directory with the contents shown below.

b. The file names should match the contents of the boot directory. The Vitis tool expands
these pathnames relative to the sw directory of the platform at v++ link time or when
generating an SD card. However, if the bootgen command is used directly to create a
BOOT.BIN file from a BIF file, full pathnames in the BIF are necessary. Bootgen does
not expand the names between the <> symbols.

/* linux */

the_ROM_image:

{

 [fsbl_config] a53_x64

 [bootloader] <fsbl.elf>

 [pmufw_image] <pmufw.elf>

 [destination_device=pl] <bitstream>

 [destination_cpu=a53-0, exception_level=el-3, trustzone]

<bl31.elf>

 [destination_cpu=a53-0, exception_level=el-2] <u-boot.elf>

}

Xilinx Vitis platform creation

We need to import now our platform into Xilinx Vitis tool, in order to create an application based on

our device with the Linux system we created.

1. Create Platform Project on the Vitis tool and insert a name for our platform
2. Create a new platform from hardware (XSA) and select the .XSA from Vivado project

a. Select Operating system Linux
b. Select Processor psu_cortexa53_0
c. Select Architecture 64-bit

3. In platform.spr select psu_cortexa53 linux on psu_cortexa53
a. Bif File: BIF file we creater earlier
b. Boot Components Directory: select /images/linux directory
c. Linux Image Directory: select /images/linux directory
d. Linux Rootfs: select rootfs.tar.gz in /images/linux directory
e. Bootmode: SD
d. Sysroot Directory: select the export of sdk.sh we run in previous steps

4. Build platform, by right-click on the explorer on the platform we created and selecting Build
Project

Now if you create a Vitis application in the same workspace as this platform, you can find this platform

available in the platform selection page in platform creation wizard. If you'd like to reuse this platform

in another workspace, add its path to PLATFORM_REPO_PATHS environment variable before

launching Vitis GUI, or use "Add" button in platform selection page of Vitis GUI to add its path.

In our case we are using a Vitis-application example vector addition from the Xilinx template library,

based on the platform we created. We build the application and get the boot components and .xclbin

file and application executable.

To create our bootable SD-card, we need two partitions

1. BOOT partition (approximate 4MB), copy the files
a. BOOT.BIN

62

Deliverable No: D2.1 - Preliminary version of EnerMan Data Collection and Management Components

b. boot.scr
c. image.ub
d. .xclbin and application executable

2. Rootfs partition (rest space of SD card). Write the rootfs files into the SD-card rootfs-
partition:
` sudo tar -zxvf rootfs.tar.gz -C /media/rootfs/

63

