

1

Date : 30/06/2022

Deliverable No : 2.2

Responsible
Partner

: ISI

Dissemination
Level

: Public

D2.2 – Final Version of EnerMan Data Collection and
Management Components

Ref. Ares(2022)4860863 - 04/07/2022

2

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Short Description

This deliverable gives an overview of the EnerMan project final activities of WP2 T2.1 and T2.4. It
consists of 5 sections that provide a description of the EnerMan edge/end node architecture and
updated on the execution environment, the implementation of intelligence related applications as
well as the support for Federated Learning within the edge node. Also, the final and updated
activities for security applications on cyber-attack prevention and detection as well as a
demonstration of some of the described applications in action.

Document Information & Version Management

Document Title:
Final version of EnerMan Data Collection and
Management Components

Document Type: Report and Demonstration

Main Author(s):

Apostolos Fournaris (ISI)
Evangelos Haleplidis (ISI)
Thanasis Tsakoulis (ISI)
Aris Lalos (ISI)

Contributor(s):

Giannis Morianos (TSI)
Andreas Miaoudakis (STS)
Panagiotis Rodosthenous (ITML)
Mina Marmpena (ITML)
Konstantinos Bouklas (ITML)
Christian Capezza (UNINA)
Antonio Lepore (UNINA)
Biagio Palumbo (UNINA)

Reviewed by:
UoP team
SUPM team

Approved by: Ing. Giuseppe D'Angelo (CRF)

Version Date Modified by Comments

V0.1 15/04/2022 Apostolos Fournaris (ISI) ToC and first draft

V0.2 01/06/2022 Mina Marmpena (ITML)
ITML input
provided

V0.3 05/06/2022
Apostolos Fournaris (ISI), Thanasis
Tsakoulis (ISI), Evangelos Haleplidis
(ISI)

ISI input provided

V0.4 08/06/2022 Andreas Miaoudakis (STS)
STS security input
provided

V0.5 10/06/2022 Giannis Morianos (TSI)
Security related
TSI inpuf provided

Project Information

Project Acronym: EnerMan

Project Title:
ENERgy-efficient manufacturing system
MANagement

Project Coordinator:
Dr. Ing. Giuseppe D'Angelo CRF
giuseppe.dangelo@crf.it

Duration: 36 months

3

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

V0.6 12/06/2022
Apostolos Fournaris (ISI)
Aris Lalos (ISI)

Final ISI input
provided

V0.7 15/06/2022
Apostolos Fournaris (ISI), Christian
Capezza (UNINA), Antonio Lepore
(UNINA), Biagio Palumbo (UNINA)

First full version of
the deliverable

V0.8 20/06/2022 Apostolos Fournaris (ISI)
Deliverable ready
for internal review

V0.9 30/06/2022 Apostolos Fournaris (ISI)

Deliverable
internal review
comments
addressed and
final deliverable
ready for
submission

V1.0 01/07/2022 Kubra Yurduseven (INTRACT) Format review

V1.1 04/07/2022 Ing. Giuseppe D'Angelo (CRF) Submitted version

Disclaimer

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation, or both. The publication reflects the author’s views. The
European Commission is not liable for any use that may be made of the information contained
therein.

4

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

TABLE OF CONTENT

EXECUTIVE SUMMARY .. 9

1. INTRODUCTION ... 10

2. ENERMAN INTELLIGENT END NODES/EDGE ARCHITECTURE 11

2.1. Overall Architecture and Usage .. 11

2.1.1. The Sensor architectural view ... 12

2.1.2. The Control architectural view .. 14

2.2. Edge/End Node Execution Environment ... 15

2.3. Interaction with the EnerMan framework - Communication Interfaces 16

3. EDGE NODE DATA COLLECTION, DATA PROCESSING DESIGN AND COMPONENT

IMPLEMENTATION ... 17

3.1. Sensor based Data collection mechanism .. 17

3.2. Data Harmonization .. 21

3.3. Data post processing –Energy Consumption prediction ... 23

3.3.1. Dataset .. 23

3.3.2. Problem formulation and preprocessing .. 25

3.3.3. Designed and Developed Neural Networks models ... 26

3.3.4. Other approaches ... 33

3.4. Intelligence Acceleration using Hardware assistance ... 33

3.4.1. The open-source framework hls4ml ... 33

3.5. Federation based processing mechanism ... 38

3.6. Edge node functionality and Configuration updates (reconfiguration) 40

4. EDGE NODE SECURITY ASPECTS.. 42

4.1. Security Architecture .. 42

4.2. Security Mechanisms .. 43

4.2.1. Cybersecurity Attack Detection .. 43

4.2.2. Cybersecurity Attack Prevention .. 44

5. DEMONSTRATION REPORT .. 50

5.1. Federated Learning edge node processing mechanism ... 50

5.2. Hardware Security Token (HST) capabilities and Secure communication using Quantum-Safe

TLS 57

5.2.1. HST concept and overall usage ... 57

5.2.2. Adding Quantum Safe TLS 1.3 in the HST ... 60

5.3. AI Industrial Intrusion Detection ... 64

5.3.1. Set-up the board ... 64

5.3.2. Set-up the host .. 64

5

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

5.3.3. Train a quantized MLP with Brevitas .. 64

5.3.4. Import model into FINN and compare it with Brevitas execution 66

5.3.5. Synthesis of the accelerator and generation of the bitfile ... 67

6. CONCLUSION ... 71

REFERENCES ... 72

TABLE OF FIGURES

Figure 1 EnerMan Intelligent Edge node Sensor architectural view ... 12

Figure 2 EnerMan Intelligent Edge node Data collection and pre-processing paths............................ 13

Figure 3 EnerMan Intelligent Edge node Control architectural view ... 14

Figure 4 Updated EnerMan Intelligent Edge Node Execution Environment .. 15

Figure 5 Intelligent Edge Node interactions ... 16

Figure 6 Ultra96v2 platform.. 17

Figure 7 Heterogeneous sensors supported ... 17

Figure 8 Edge data collection block diagram .. 18

Figure 9 On-board sensor data stream monitors ... 19

Figure 10 Rudimentary web server for collecting datasets .. 20

Figure 11 Simple protocol for sending dataset files ... 20

Figure 12 Data harmonization workflow between the edge and the cloud ... 21

Figure 13 UML diagram of the EnerMan harmonization module ... 22

Figure 14 Five first samples of the dataset ... 24

Figure 15 Various feature information ... 25

Figure 16 Data standardization ... 26

Figure 17 ANN structure ... 27

Figure 18 ReLU activation function ... 27

Figure 19 Number of parameters per layer .. 28

Figure 20 Training and Validation Process .. 29

Figure 21 Predicted vs Ground truth samples of test set ... 29

Figure 22 CNN structure ... 30

Figure 23 Tanh(x) activation function ... 31

Figure 24 MaxPooling Layer operation ... 31

Figure 25 Training and Validation Process .. 32

Figure 26 Predicted vs Ground truth samples of test set ... 32

Figure 27 yml file example .. 34

Figure 28 ANN configuration yml file .. 35

Figure 29 Latency of ANN design .. 35

Figure 30 Resource utilization of ANN design ... 36

Figure 31 Configuration yml file of CNN design .. 36

Figure 32 Latency of CNN design .. 37

Figure 33 Resource Utilization of the CNN design .. 37

Figure 34 Federation scheme ... 38

Figure 35 Federation learning process ... 39

Figure 36 Simple protocol for sending ML models ... 40

6

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 37 Implementation details of federation process ... 40

Figure 38 Setup of the rpyc connection .. 41

Figure 39 Download and run functionality ... 41

Figure 40 The EnerMan Security Architecture .. 43

Figure 41 The Application Gateway overall architecture and the API Management. 44

Figure 42 Gateway Message Flow .. 45

Figure 43 Welcome screen on WSO2 APIM, showing the admin all the available API types. 45

Figure 44 Runtime Configurations for an API ... 46

Figure 45 APIs appearing on the developer portal ... 46

Figure 46 Available options for an API published on the devportal. .. 47

Figure 47 Configuration of a service provider with the different possible authentication protocols .. 48

Figure 48 Authentication Process and API protection .. 49

Figure 49 Initial setup of the server .. 50

Figure 50 Creation of the global model and test loader ... 51

Figure 51 Class model of our CNN .. 51

Figure 52 High level overview of server process .. 52

Figure 53 Server handling clients .. 53

Figure 54 Server initialization and connection from clients ... 54

Figure 55 Server termination .. 54

Figure 56 Client1 learning process .. 55

Figure 57 Client2 learning process .. 56

Figure 58 Client3 learning process .. 57

Figure 59 Created postquantum handshake version of TLS1.3 for embedded systems 62

Figure 60 Training loss per iteration ... 65

Figure 61 Test accuracy per iteration ... 65

Figure 62 The exported ONNX model in Netron ... 66

Figure 63 The steps towards the bitfile generation .. 67

Figure 64 Block design architecture in Vivado .. 68

Figure 65 Terminal Output .. 69

TABLE OF TABLES

Table 1. additional TLS1.3 Handshake codepoints for PQC schemes ... 63

Table 2 Metrcics of I2DS ... 69

7

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

LIST OF ACRONYMS

AES Advanced Encryption Standard

API Application Programming Interface

BDAE Big Data Analytics Engine

CPS Cyber-Physical System

CPSoS Cyber-Physical System of Systems

CWRU Case Western Reserve University

DL Deep Learning

DMZ DeMilitarized Zone

DoA Description of Action

DoS Denial of Service

ENISA European Union Agency for Cybersecurity

FIFO First In First Out

FL Federated Learning

FPGA Field Programmable Gate Array

GPU Graphic Processing Unit

HLS High Level Synthesis

HST Hardware Security Token

HTTP HyperText Transfer Protocol

I2DS Industrial Intrusion Detection System

ICS Industrial Control Systems

IDS Intrusion Detection System

iDSS Intelligent Decission Support System

IETF Internet Engineering Task Force

IFCA Iterative federated clustering algorithm

IID Independent and Identically Distributed

IIoT Industrial Internet of Things

IP Intellectual Property

IPS Intrusion Prevention System

IR InfraRed

JWT JSON Web Token

MITM Man In The Middle

ML Machine Learning

MLP MultiLayer Perceptron

MPSoC MultiProcessor System on a Chip

8

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

MRT Mean Radiant Temperature

OAuth Open Authorization

ONNX Open Neural Network Exchange

OT Operational Technology

PKCE Proof Key for Code Exchange

PKI Public Key Infrastructure

PL Programmable Logic

PLC Programmable Logic Controller

PS Processor System

QNN Quantized Neural Network

ReLU Rectified Linear Unit

REST Representational state transfer

SCADA Supervisory Control and Data Acquisition

SoC System on a Chip

TLS Transport Layer Security

UNSW University of New South Wales

WP Work Package

XRT Xilinx RunTime

XSS Cross-Site Scriptiong

9

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

EXECUTIVE SUMMARY

This deliverable is focused on the final activities of wp2 and especially in the activities of task 2.1 (T2.1)

and task 2.4 (T2.4). The deliverable presents complementary components and modules as well as

additions to the overall EnerMan intelligent edge node architecture that aim to fulfil the actions

prescribed in the DoA mainly for tasks 2.1 and 2.4. After a short introduction, we provide a recap as

well as updates on the EnerMan intelligent edge node architecture and overall functionality. Then in

section 3 we describe in detail the activities that have been performed to realize this additional to

d2.1 functionality and architectural components including any necessary link with the more

theoretical work on t2.2 and t2.3, the data harmonization mechanism updates and the design and

implementation flow of hardware assisted intelligence (deep learning and federated learning)

operations. Section 4 is focused explicitly on the security activities taking place mainly at the edge

(reporting the activities of t2.4) but also any additions that are made to extend the EnerMan security

to the overall EnerMan framework. This includes extensions of the security architecture, its

components, and their functionality. Finally, section 5, describes indicative

demonstrations/tutorials/hands-on for the various EnerMan intelligent edge node functionalities.

Since the deliverable is a continuation of D2.1 where the preliminary activities of D2.1, D2.2 (and

partially D2.3) are reported, we tried not to repeat the same information that appear in D2.1. There

are several exceptions to this rule for activities that require some background information to become

available to the reader in order to showcase the additional work that has been done till m18.

10

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

1. INTRODUCTION

Work Package 2 of the EnerMan project is focused on the EnerMan framework activities that are

performed at the edge layer of the Industrial Internet of Things (or the Factory of the Future concept).

Thus, it is meant to achieve appropriate data collection from the various in-field deployed devices

within the industrial environment or from dedicated data collection points that are already deployed

at the industrial site. They concept of edge computing that we are promoting in the EnerMan project

is also focused on performing as much computation as possible at the edge without the need to

include the extra delay of transmitting the data to a cloud/system layer. This concept is manifested in

the WP2 activities through the design and implementation of an EnerMan Intelligent edge node that

not only collects data but also performs computation/processing on those data as well. The overall

concept has already been described in D2.1 and includes the necessary computation/execution

environment that will support the required by the industrial/factory partners, computations

(additionally supporting any future such computations that may arise) as well as the implementations

of prescribed software and hardware assisted computations. In D2.1 we focused our analysis on the

design and implementation of the EnerMan intelligent edge node execution environment, some initial

intelligent operations related to the execution environment (that are expanded and further refined in

a dedicated D2.3 deliverable) and the preliminary security architecture. In this deliverable, we report

any refinements on the execution environment and the data harmonization mechanism, but we

mostly focus on the final data collection mechanisms supported by the EnerMan Intelligent Edge node

as well as the implementation/support of intelligence based (e.g., ML/DL, federated learning) research

work done mostly in T2.2. Apart from that we also provide the final security architecture and its usage

for cybersecurity attack prevention and detection (complementing the D2.1 reported work).

11

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

2. ENERMAN INTELLIGENT END NODES/EDGE ARCHITECTURE

2.1. Overall Architecture and Usage

As already described in D2.1 the EnerMan Intelligent Edge node architecture is an heterogenous

embedded system device that can perform multiple activities within the manufacturing infrastructure

in an efficient manner. This edge device collects the data that are provided by various sensors existing

inside the industrial domain, harmonize those data in order to be compatible with the data

expectations required by the EnerMan big data analytics engine and in parallel also processes those

data so as to offer the EnerMan platform as well as the operator appropriate information that will

help them make informed decisions on the optimal energy sustainability options.

The Data Collection and Processing operation that is performed at the edge using the EnerMan

intelligent edge node, is efficient, versatile/flexible to the end user needs and easily configurable. As

described in D2.1 and the EnerMan Description of Action, the EnerMan Edge node is able to collect

and process the following data:

▪ Machine energy consumption

▪ Multiple sensory data (temperature, pressure, humidity, etc.) from existing pilot deployed

sensors

The intelligent functionality that the EnerMan edge node can provide is the following:

• Machine Health status monitoring to detect anomalous, faulty states of a given machine.

Such states can impact the energy consumption of a given machine and eventually the energy

sustainability of the overall factory.

• Local Data energy consumption predictions. We consider important been able to provide to

the factory operators in-field, local, coarse grain energy consumption predictions to help the

operator visualize energy consumption trends that can impact locally the production (eg.

production on a single room or on a single array of machines etc). This mechanism can

complement the systemwide EnerMan energy consumption prediction mechanism and fine

tune the prediction results.

• Data Completion (when missing data appear in a timeseries). Given that in any Industrial

system there may be loss of single sensor data values within a given timeseries, the EnerMan

intelligent Edge node data collection mechanism is able to use DL models (based on

autoencoders) in order to complete missing data values within a timeseries period. This is

described algorithmically in more details in D2.3

The EnerMan edge node architecture for Data collection and processing as already described in the

preliminary version of T2.1 outcomes (the deliverable D2.1) is meant to be used in various ways. Also,

the node should be able to process data in a fast/efficient manner but also the node should be easily

adjustable/flexible so as to be readily updated and be adapted in general to various different industrial

environments. To achieve these goals, we use both hardware (for acceleration purposes) as well as

software means.

The final embedded system platform that covers best all aspects of the EnerMan edge node is a

MultiProcessor System on Chip (MPSoC) embedded system device that can host in its core, multiple

processors (usually multicore processors) to achieve efficiency but also specialized hardware

components for specific applications (e.g., Graphic Processing Units (GPU) or real-time processors). To

further support hardware reconfigurability, our hardware platform choice is embedded system

12

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

MPSoCs that include in their SoC architecture, reconfigurable hardware programmable logic in the

form of an FPGA fabric. The latest FPGA manufacturer solutions are perfectly capable of supporting

the above-described setup. In EnerMan we opt for Xilinx manufacturer devices focusing on the Xilinx

-AMD Zynq Ultrascale+ MPSoC design as this is realized in two characteristic embedded system boards

i.e., the Xilinx-AMD ZCU 104 or 102 development board and the Avnet ULTRA96 development board

that both use the Xilinx-AMD Zynq ULTRASCALE+ ZU9EG MPSoC.

The overall EnerMan Intelligent Edge node architecture is designed to support the above

requirements. The architecture has two different views, the sensor data collection view, and the

control view

2.1.1. The Sensor architectural view

This view includes all the necessary architectural components of the EnerMan Intelligent Edge node

that allow it to act as an edge data collection and pre-processing module of the EnerMan overall

architecture. Some of these components have been preliminary described in D2.1 but till the end of

the WP2 (reported in the current deliverable) new components have been added and the existing

ones have been updated in order to better capture the specification of the EnerMan overall

architecture. An overview of the EnerMan Intelligent Edge node sensor view can be seen in Figure 1

Figure 1 EnerMan Intelligent Edge node Sensor architectural view

The EnerMan Intelligent Edge node has three different mechanisms to collect and forward data to the

rest of the EnerMan architecture and more specifically to the big data analytics EnerMan engine

(designed and implemented in the context of the WP3 activities). The first approach is direct sensor

data collection from the various industrial pilot sites. This is practically done by installing a dedicated

EnerMan data collection agent/daemon on the pilot data collection site. This component is meant to

constantly monitor the industrial data collection point for new data and when such data are identified

to forward them to the EnerMan Intelligent Edge node for further processing and analysis. Given the

various EnerMan pilot use cases and the EnerMan pilots’ feedback provided in WP1 and WP6, the

sensory data are stored in the industrial sites as csv files that are periodically generated when enough

13

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

of incoming sensor values are aggregated. The EnerMan daemon detects such newly generated csv

files and forwards them accordingly to the EnerMan Intelligent Edge node. As expected, when new

data reach the EnerMan Intelligent Edge node the Data harmonizer is automatically executed so as to

harmonize the data as needed for the overall EnerMan framework.

Apart from the above, industrial site driven data collection mechanism, the EnerMan Intelligent Edge

node is capable of deploying its own end device EnerMan sensor using various different industrial

communication protocols (e.g MQTT, Backnet, Modbus, IEE802.15.4 etc) in order to collect in-field

sensor measurements (without relying on the existing industrial sensors or by complementing existing

industrial sensors). This approach enables more direct data collection compared to the previous

collection mechanism.

The third data collection approach that the EnerMan Intelligent Edge node is employs, is based on

data that are generated within the node itself after some pre-processing from the first of second data

collection approach. While these are not raw data (but rather metadata or features) they are still

forwarded to the EnerMan system and more specifically to the big data analytics engine. These

metadata are mainly the outcome of the EnerMan Intelligent Edge node supported intelligence and

can be sensor data predictions (e.g., energy consumption predictions) as well as anomalous machine

behaviour that can be attributed to machine faulty states (evaluation of machine health status).

Note that from a research perspective, we are capable of supporting intelligent processing (ML and/or

DL based) that can follow the Federated Learning paradigm. This approach assumes that we can

deploy within the Industrial environment several EnerMan Intelligent Edge nodes that collect data and

monitor a subset of the overall factory machines (eg, machines within a given room or of a given

industrial process). Such nodes are acting as clients that collect similar data but due to the limited

dataset size cannot achieve individually significant inference (classification/prediction/imputance)

accuracy. Using the Federated Learning paradigm, we are able to aggregate the various clients (i.e.,

individual EnerMan Intelligent Edge nodes) ML/DL models in order to create a global federated

supermodel (with increased accuracy) that can be then forwarded back to the clients so as to help

them make more accurate inferred results. While the Federated Learning algorithmic work is

described in D2.3, in D2.2 (i.e., the current deliverable) we provide the practical backbone that allows

the algorithms to work in a close to real environment (assuming an IP network communication

infrastructure). An overall view of the three above described paths can be seen in the following figure

(Figure 2)

Figure 2 EnerMan Intelligent Edge node Data collection and pre-processing paths

14

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

It should be noted that since the EnerMan framework may not necessarily reside as a whole in the

Industrial site premises (it may be offered as private or public cloud-based service), there a significant

risk of cybersecurity attacks on the data to be sent or received as well as on the Industrial

infrastructure that is associated with the EnerMan platform as a whole. Thus, all data transmissions

to or from the EnerMan Intelligent Edge node are secured while the overall system is designed to

prevent cybersecurity attacks as well as detect such attacks when they are initiated.

2.1.2. The Control architectural view

This view of the EnerMan Intelligent Edge node is exploring the control/configuration capabilities of

the node itself. Given the task and DoA description regarding control on the EnerMan Intelligent Edge

node, we can split this control type into two different paths. The first path has to do with the control

of the EnerMan Intelligent Edge node itself while the second path has to do with the capability of the

EnerMan Intelligent Edge node to propagate industrial device configuration decisions that stem from

informed choices made by the industrial personnel (with the assistance of the EnerMan i-DSS

subsystem). Thus, in the first adopted path the control target is the EnerMan Intelligent Edge node

while in the second adopted path the control target is some industrial subsystem (or machine). The

overall control architectural view can be seen in Figure 3

Figure 3 EnerMan Intelligent Edge node Control architectural view

As seen in Figure 3, there are several ways that can be used to adjust the configuration of the EnerMan

intelligent Edge node. Algorithmically, the intelligence of the node can be controlled using the

Federated Learning paradigm when the client ML/DL models are updated/enhanced from the Global

Federated Model (that takes into account all local client models to achieve high accuracy). More

information on this concept can be found in D2.3. Apart from that, the Data Harmonization process is

customized according to the Industrial factory (eg. any EnerMan pilot) at hand, thus appropriate

configuration files can be provided to the Data harmonization mechanism in order to set it up for a

given industrial domain and factory. Finally, it should be taken into account that the EnerMan

intelligent Edge node device is a heterogenous MPSoC with multiple processing capabilities in the form

of CPU, GPU as well as FPGA fabric. This allows for a fundamental reconfiguration that can be extended

15

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

to software and hardware IP cores. This latest approach has been discussed in D2.1 where the

EnerMan Intelligent Edge node execution environment is detailed.

Given these three ways of configuration control over the EnerMan Intelligent Edge node, we have

designed and implemented a mechanism (extended the existing execution environment of the

EnerMan Intelligent Edge node) that can support this reconfiguration in a remote way. This is in line

with the overall EnerMan concept, where configurations are provided by the EnerMan system to the

edge nodes and then they are propagated (if needed) to the industrial actuators/controllers (if those

are available). The mechanism is further described in section 3 of this deliverable.

Regarding the EnerMan Intelligent Edge node control configurability, it shouldn’t be omitted its

capability to collect through the remote configuration mechanism user chosen configurations (Global

control processes/configurations) using the EnerMan i-DSS component that are communicated to the

Industrial control/actuation. This procedure is supported by the EnerMan Intelligent Edge node as

mentioned above but it is also enhanced with local control configurations (that are further described

in D2.4). However, in practice due to the sensitive nature of Industrial operations within the EnerMan

pilot sites, it would be extremely difficult to actually deploy such configurations in the pilot sites. Thus,

we envision to showcase this kind of configuration deployment either as dedicated control guidelines

to the factory in-field workers or as configurations to be realized in a virtual factory.

2.2. Edge/End Node Execution Environment

In Deliverable D2.1 we have provided detailed description and usage of the EnerMan intelligent edge

node execution Environment that also included demonstration of its creation using the Xilinx tools as

well as demonstration of its usage. Although the Execution Environment has practically been already

finalized by M14 of the project (as reported in D2.1), we have nevertheless provided some additions

to its overall structure so as to increase its simplicity and usability. More specifically, we have migrated

all firmware and OS functionality from the original Petalinux environment (supported through

dedicated tools by Xilinx-AMD) to a more open Debian distribution that can simplify the introduction

of new OS and application components. The new version of the execution environment is fully

compatible with the original one and in practice we can use both approaches. The updated version of

the execution environment can be seen in Figure 4

Figure 4 Updated EnerMan Intelligent Edge Node Execution Environment

16

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

As can be seen from the above figure, a new module has been added in the environment, denoted as

Node reconfiguration client, that is meant to support the configuration control view of the EnerMan

Intelligent Edge node. The functionality and usage of such a module (along its interaction with a

necessary reconfiguration server i.e., the remote configuration orchestrator) is described in more

details in subsection 3.5

Apart from the above, as it has briefly already been described, the final Edge node Execution

Environment does not necessary rely on the Petalinux distribution (that has several usability

drawbacks) but is rather built on top of the generic Xilinx Linux kernel. This allows the usage of other

Linux distributions like the Debian distribution that is currently used on the EnerMan Intelligent Edge

node device (using the Avnet ULTRA96 board or the similar Xilinx ZCU104 board).

2.3. Interaction with the EnerMan framework - Communication Interfaces

The EnerMan intelligent edge node interaction with the rest of the EnerMan framework is mainly

made with the actual industrial pilots sites (where data are generated) and the Big Data Analytics

engine, BDAE, (designed in T3.1) that acts as the prime data collector and consumer, as can be seen

in Figure 5. Pilots provide the main input to the EnerMan framework and interact with the Intelligent

Edge Node, identified as step 1 in Figure 5, by providing generated data, either by having sensors

providing direct info, or by providing their own files, either by copying them into one specific folder to

be captured by a folder daemon, or by uploading it on a Web Server on the node. This interface is

discussed in detail in Section 3.2. As also described in section 2.1, data can be collected using the

EnerMan Intelligent Edge node end devices (sensors) that use their own communication protocol

related interface.

The Intelligent Edge Node takes the raw data input, runs it through an initial harmonization process in

order to process this raw data and turn it into a unified and standardized data representation. To

perform the harmonization, the module uses an HTTP GET request to read JSON Data Model files from

the BDAE API and an HTTP POST request to modify their content. These Data Models contain metadata

information, dedicated to each pilot’s data characteristics. Finally, the harmonized data in csv format

are securely transferred to the BDAE server using the SSH File Transfer Protocol, identified as step 2

in Figure 5. This interface is discussed in more details in Section 3.2.

Figure 5 Intelligent Edge Node interactions

Note, that in the presence of security measures, the above interactions can be altered so as to fully

support the EnerMan security capabilities. More specifically, while the original data transmission

between the pilot site and the EnerMan Intelligent Edge node is performed using the TCP protocol,

using the EnerMan security realized capabilities, the transmission is upgraded to quantum safe TLS 1.3

employed a dedicated Hardware Security Token that is integrated inside the EnerMan Intelligent Edge

node.

17

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

3. EDGE NODE DATA COLLECTION, DATA PROCESSING DESIGN AND

COMPONENT IMPLEMENTATION

3.1. Sensor based Data collection mechanism

The Edge data collection has been based around the core reconfigurable platform of AvNet Ultra96v2

(Figure 6) that defines a potable, multi-protocol, multi-function data aggregator and edge processing

facility.

Figure 6 Ultra96v2 platform

The initial Petalinux environment and OS kernel have been upgraded to a customized porting of the

Bullseye Debian distribution (Debian 11), over which, a number of data acquisition protocols and

mechanisms are supported. Initially, based on the various indicative project use cases, it supports a

core set of industrial standards, such as Modbus, KNX and BACNet, as well as high-end, industrial

grade, high-frequency IEPE vibration sensors and relative acquisition interface boards. Besides these,

modern IIoT protocols like MQTT and CoAP, are supported as well, over wired, or wireless media,

including Bluetooth/BLE, IEEE 802.11b/g/n, IEEE 802.15.4 TSCH or CSMA, in 2.4GHz or long-range, sub-

GHz bands (IEEE 802.15.4g). In this way, it can directly communicate with many available standard

COTS sensor or actuator devices, but also with modern, low power, multi-sensor IoT components

(Figure 7).

Figure 7 Heterogeneous sensors supported

18

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

The block diagram of the main edge node, data collection mechanism is presented in Figure 8. The

downstream communication to field devices can be done through all feasible combinations of protocol

components and physical medium interfaces, according to the particular use case and the field device

specification. The edge node can also retrieve real-time data streams, if needed, from upstream links,

using typical industrial protocols over TCP/IP (Ethernet or WiFi).

Figure 8 Edge data collection block diagram

The management, collection setup and routing of data towards the Data Processing subsystems is

implemented by the Data Stream Manager and Data File Manager components, while the sensor data

streams can be also accessible directly through a monitoring web interface implemented on board by

the Data Stream Manager (Figure 9).

19

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

 Figure 9 On-board sensor data stream monitors

In addition, in order to support different data collection practices e.g., in cases that security, privacy

and confidentiality policies do not allow for direct acquisition of sensor data streams, data can be also

collected and stored in text or excel files in regular periods and in chunks. This file collection can be

done by uploading data to a specific folder location and collecting them through some folder daemon

mechanism that checks whether new files have been inserted, or through a web interface, that

subsequently sends the uploaded file to the appropriate next step in the EnerMan process.

Towards that end goal, two basic Python programs have been developed that are able to run in the

EnerMan Intelligent Edge node. The first program is a folder daemon that has a constant network

connection with the EnerMan Intelligent Edge node and is deployed in the data repository of any

industrial manufacturing system. The daemon continuously monitors a specific folder for new files.

Once a new file has been copied into the folder the daemon will detect it and will send it over the TCP

connection to EnerMan Intelligent Edge node. The second program is a rudimentary web portal, based

on python’s Flask web server, where pilots can upload their files. Once these files are uploaded, they

are sent via the same mechanism as the folder daemon to the EnerMan Intelligent Edge node data

harmonization mechanism.

20

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 10 Rudimentary web server for collecting datasets

To correctly transport any number of files present into the directory or submitted by the dataset

producer, we designed a very simple application protocol, using TCP as transport protocol (which as

part of T2.4 is upgraded to a highly secure TLS1.3 communication flow), as shown in Figure 11. The

client will send the number of files along with the total length of the segment and then iteratively for

each of newly discovered files will send the file number along with its filename’s length, the filename,

the file’s length, and finally the file. The server, on the other end, supports connection from multiple

clients, and will forward the received data to the next step in the EnerMan process.

Figure 11 Simple protocol for sending dataset files

21

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

3.2. Data Harmonization

Data harmonization workflows aim to process the raw data collected at the edge nodes and turn them

into a unified and standardized data representation. This is the first layer of pre-processing, taking

place at the edge nodes, so that the various data sets follow a standardized form when they are

ingested in the cloud, where the second layer of pre-processing will be applied. Data harmonization is

an important stage in a data preparation pipeline since the raw data are produced in custom formats

which are diverse and pose a challenge for the application of advanced pre-processing techniques. For

example, raw provided datasets can have varying file formats (e.g., .csv, .xlsx, .eps) and missing values

indications (e.g., N/A, #NA, -1.#IND, -NaN, -nan , N/A, NA, NULL, NaN, n/a, nan, null), non-standard

headers (e.g., multirow, with spaces, too long), duplicates, localized indications for decimal and

thousands, heterogeneous timestamp formats and time zones, empty rows or columns. These are all

issues that need to be addressed at the collection edge nodes, so that cloud processing functions can

be applied uniformly.

The Data Harmonization module (initially presented in D2.1 Preliminary version of EnerMan Data

Collection and Management Components, M12) handles all the above-mentioned data harmonization

requirements. Figure 12 depicts the harmonization module deployed in the data aggregator of the

EnerMan intelligent nodes and how it communicates with the Big Data Analytics Engine (BDAE) cloud

server (more details on the BDAE architecture can be found in D3.1 Big Data Collection and Analytics

Platform and Analytics Report, M18). The module uses a GET request to read the JSON Data Model

files from the BDAE API and a POST request to modify their content whenever the schema of the raw

data changes. These Data Models contain metadata information, dedicated to each pilot’s data

characteristics, to guide the harmonization processing. After the harmonization is complete, the

harmonized data in CSV format are securely transferred to the BDAE server using the SSH File Transfer

Protocol, which ensures data integrity via encryption and cryptographic hash functions, while it

authenticates both the client and the server.

Figure 12 Data harmonization workflow between the edge and the cloud

The harmonization module is written in Python and is comprised of the following components: a

DataLoader class to load the raw batch data, a BaseHarmonizer which serves as an abstract class to

enforce the implementation of the required harmonization methods in the child harmonizer classes.

A dedicated harmonizer class is built for each organization as presented in Figure 13, e.g.,

CRFHarmonizer, YIOTISHarmonizer, 3DNTHarmonizer, STOMANAHarmonizer. This separation was

22

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

necessary because of the heterogeneous data representations of the different pilot organizations. The

harmonizers share a lot of common fields and methods, but they also employ different approaches to

implement them behind the scenes. Following a one size fits all approach, was rejected because it

would lead to a heavy weight monolithic class, difficult to maintain. Essentially, the motivation was to

have some extra modularity and repetition in the edge implementation, but to completely avoid it in

the cloud processing.

Figure 13 UML diagram of the EnerMan harmonization module

The final component of the module is a library with harmonization functions and quality checks

operations which is available to all harmonizers:

NAME
 src.utils.harmonization_utils - # -*- coding: utf-8 -*-
FUNCTIONS
 clean_column_names(data, new_features)
 Clean column names and returns a list of the standardized column names.

 clean_dups_nan(data, missing_indication)
 Drop duplicates and empty rows.

 concat_date_time_columns(data)
 Concat date and time column in a single column.

 drop_unnamed_empty_columns(data)
 If dataframe has unnamed empty columns drop them.

 fix_column_names_nonum(data)
 If a column name doesn't contain its corresponding number, add it.

23

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

 get_new_features_dict(new_feature_structure, new_features, std_column_names)
 Creates a dict of new features dicts and standardized names.

 local_to_utc(tz_info, df)
 Convert local timezone datetime columns to UTC.

 merge_new_features(features, new_features_dicts)
 Merge the existing features' dictionary with the new features.

 optimize(df, datetime_features)
 Optimize floats, ints and objects.

 replace_with_booleans(data, contains_boolean)
 If dataset contains boolean column replace ON OFF with 1 0.

 resampling_dups(resample, data)
 Handle duplicate timestamps (keep first, last, avg, or median.

 standardize_cols(data, features_dict)
 Set standardized feature names and dtypes.

 to_utc_aware(df)
 Make UTC-aware datetime columns.

 utc_to_local(tz_info, df)
 Convert UTC timezone columns to local timezone.

 update_org_data_model(org_name, post_data_model_url, org_data_model)
 Write the updated organization's data model to <ORG>.json file.

3.3. Data post processing –Energy Consumption prediction

The problem of energy consumption prediction is rising nowadays as a crucial one due to the high

impact on various operations at buildings or whole factories. Acquiring information for possible high

energy consumption in the near future, could assist the administrators to take the appropriate

countermeasures in order to adapt the building/factory operations. Moreover, a possible outlier could

cause future damage in the factory machines thus it needs to be detected in time. In EnerMan, we

address this problem at the various layer of the EnerMan architecture. At the Edge layer, in the

EnerMan Intelligent edge node, we introduce a local energy consumption prediction mechanism that

relies on Deep Learning techniques and does not need a fine-grained energy consumption model for

each Industrial environment machine. In subsection 3.3 we provide all necessary design details on our

approach while in subsection 3.4 we showcase how the generated DL models can and have been

implemented using hardware acceleration.

3.3.1. Dataset

An enormous problem that is inherent in neural networks is the selection of the appropriate dataset

which could boost the model’s accuracy significantly. A dataset with poor quality (high noise, few

features, small number of entries etc.) could never reach high levels of accuracy. We have chosen an

open-source dataset from the relevant research literature [1] This choice was made in order to

compare our models with some published results. We plan to use the same methodology described

in this subsection to the EnerMan pilot datasets that fit the dataset requirements. The used datasets

may be a little different from those that pilots could provide but the workflow is similar and the

incorporation of them is a straight forward process.

The dataset is referred to a building near to the Chievres Airport, Belgium and consisted of 19735

samples and 28 features. Every sample in this timeseries dataset is recorded per 10 minutes and the

features are analytically explained below

24

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

1. Appliances, energy use in Wh

2. Lights, energy use of light fixtures in the house in Wh

3. T1, Temperature in kitchen area, in Celsius

4. RH_1, Humidity in kitchen area, in %

5. T2, Temperature in living room area, in Celsius

6. RH_2, Humidity in living room area, in %

7. T3, Temperature in laundry room area

8. RH_3, Humidity in laundry room area, in %

9. T4, Temperature in office room, in Celsius

10. RH_4, Humidity in office room, in %

11. T5, Temperature in bathroom, in Celsius

12. RH_5, Humidity in bathroom, in %

13. T6, Temperature outside the building (north side), in Celsius

14. RH_6, Humidity outside the building (north side), in %

15. T7, Temperature in ironing room , in Celsius

16. RH_7, Humidity in ironing room, in %

17. T8, Temperature in teenager room 2, in Celsius

18. RH_8, Humidity in teenager room 2, in %

19. T9, Temperature in parents room, in Celsius

20. RH_9, Humidity in parents room, in %

21. To, Temperature outside (from Chievres weather station), in Celsius

22. Pressure (from Chievres weather station), in mm Hg

23. RH_out, Humidity outside (from Chievres weather station), in %

24. Wind speed (from Chievres weather station), in m/s

25. Visibility (from Chievres weather station), in km

26. Tdewpoint (from Chievres weather station), Â°C

27. rv1, Random variable 1, nondimensional

28. rv2, Random variable 2, nondimensional

The five first samples are illustrated in Figure 14. Appliance and lights are in Wh while temperatures

are in Celsius and relative humidity is given as a percentage value.

Figure 14 Five first samples of the dataset

The first and second feature are the appliances and lights energy consumption in Wh. Then, features

3 to 20 show the temperature and humidity of all rooms of the building. Next, feature 21 to 26 are

metrics given from Chievres weather station (air temperature, humidity etc.). Lastly, two random

variables are induced to the dataset from the constructor. This work is focused to predict the

appliances energy consumption in the short-term future combining knowledge from previous

samples. In the table below various information about the five first features are depicted

25

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 15 Various feature information

3.3.2. Problem formulation and preprocessing

The most critical aspect of creating an appropriate and accurate DL solution is the problem

formulation because different approaches lead to huge variations in metric accuracy. The main

restriction at this stage is based on the hardware resources that could support such Neural Network

models. This affects the sequence length (how many samples) are fed to the model. Since every

sample is per 10 minutes, sequence length was chosen to be set at 12 (observing 2 hours before from

the current time), so SequenceLength = 12. The value that must be predicted is in the appliances

column after targ (target) timesteps. In order to predictthe values after 1 hour from the current

timestep, targ was set to 6.

An additional important parameter is the sampling rate (or step) that must be chosen wisely. The

dataset length (total timesteps or samples) could be characterized as small and there is no other

choice from setting the sampling rate equal to 1. So, every timestep is being utilized to train, validate

and test the Neural Networks models. The targ could set accordingly in the desirable time slot that

the designers want to predict, i.e., targ = 12 for prediction after 2 hours, targ = 30 for prediction after

5 hours and so on. Likewise, the SequenceLength could be set accordingly, but through a large number

of experiments, optimal value was found at 12.

The preprocessing state is quite crucial for the model accuracy. In this work none of the features were

omitted. Thus, each feature was utilized in the experiments. A different approach could be to drop

some of them like rv1 and rv2 in order to reduce the problem complexity, but it was found through

testing that there is, at some point, a kind of correlation between them. Another decision that needs

to be made is how to split the dataset in training set, validation set and testing set. The traditional

approach suggests 60%, 20%, and 20% respectively for train, validation and test sets. It was found that

a better option for this particular dataset is to be split as 55%, 25% and 20%. So far, the preprocessing

parameters have been set as follows:

• SequenceLength = 12

• Targ = 6

• SamplingRate = 1

• Num_training_set = 10854

• Num_validation_set = 4933

• Num_test_set = 3948

The last option that must be set is if whether to adopt either the standardization or the

normalization technique. Studying the international bibliography for analogous problems, the data

26

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

standardization is promoted as the proper one. For each feature of the dataset, the mean value is

calculated based only on training set. Then, is subtracted from the total dataset. Thereafter, the std

value of each feature from the new dataset is calculated based again only on training set and divided

to the whole dataset. In that way, each feature gets a mean value around zero and a std close to one.

These calculations are depicted below as python code where float_data is the NumPy array containing

the original dataset. At this point, it is important to note that, the mean and the std values are

calculated based only on the training data set. No data should be extracted from the validation or test

dataset and induced to the model.

Figure 16 Data standardization

3.3.3. Designed and Developed Neural Networks models

The Python neural networks models that were adopted for this work can be divided into two different

categories. First, an artificial neural network (ANN) was employed in order to obtain some baseline

metrics such as Mean Absolute Error (MAE). Various forms and structures were tested thoroughly

during the model tuning phase. The final one is constituted of 3 dense layers of 16 nodes each. The

detailed architecture is shown in Figure 17 below

27

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 17 ANN structure

As it was analytically declared in the problem formulation, a matrix 12x28 is fed to the model at input

layer. Then, a Flatten layer is applied to transform the input matrix to a vector of 336 elements. Next,

a dense layer of 16 nodes is inserted sequentially. Thereafter, a dropout layer is applied in order to

prevent overfitting. After various experiments, best values over multiple experiment (optimal) for the

dropout layers found to be at 40% and the number of nodes were set to 16. A 40% dropout means

that 30% of extracted weights will be set to 0. Also, adding more nodes has no significant impact to

the model performance. The activation function that was employed is the ReLU one (Figure 18). ReLU

sets to zero inputs less than zero and makes no modification to those greater than 0. This sequence

of layers (dense layer of 16 nodes followed by a dropout layer of 30%) was repeated two more times

until the model reaches a final single node with no activation function to get the predicted value.

Figure 18 ReLU activation function

28

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

An important aspect of the design process is the utilization of a reasonable number of parameters to

be implemented in an FPGA. As it is depicted on Figure 19, the total number of parameters is 5,953.

The first dense layer is the most computationally intensive as it produces 5,392 parameters. Then, the

second (dense_1) and third (dense_2) dense layers add 272 parameters each. Lastly, the last layer

(dense_3, single layer node) adds only the final 17 parameters. The number of parameters of a layer

is calculated by multiplying the current layer nodes with previous layer nodes plus one. Thus,

layer_params = layer_nodes*(prev_layer_nodes + 1).

Figure 19 Number of parameters per layer

The work in [1] that is compared to the one presented in this deliverable, has found that MAE equals

to 0.45 using GRU (Gated Recurrent Unit) units while the MAE equals to 0.40 based on LSTM (Long

Short Term Memory) units. Neither of those units could be adopted for our work at the current phase

due to designing tools restrictions of the HLS4ML toolbox. LSTM or GRU cells could detect in an

enhanced way the temporal dependencies from a timeseries dataset. So, the purpose is to find

solutions amenable to hardware implementation/acceleration such as ones based on ANN (artificial

neural network) and CNN (convolution neural network) in order to achieve results as close as possible

to LSTM/GRU ones.

29

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 20 Training and Validation Process

The training and validation processes are illustrated in Figure 20 through 200 epochs. The test MAE

was found to be 0.45. This is a not a great result overall but can easily outperform the GRU solution

due to its simpler architectural complexity. Compared to LSTM solution, our approach lags in accuracy

but if a tradeoff needs to be made, this work preferable due to the fact that it is faster and consume

far less resources compared to the LSTM design. Figure 21 shows the predicted values in comparison

with the original ones for every sample of the test set.

Figure 21 Predicted vs Ground truth samples of test set

The predicted values are illustrated with red dots while the ground truth data are depicted with blue

dots respectively. It is obvious that the implemented ANN model is focused on predicting values

around zero. Data points that diverge significantly from zero, are mainly responsible for the MAE final

performance. Maybe a different normalization technique should be adopted, like min-max

normalization but in a great number of prediction problems, the standard normalization, s preferred.

Regarding the ANN model, it exhibits analogous performance with the GRU one while at the same

time has quite simpler architecture.

30

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

The second approach that was employed for this work in order to exploit all the feasible neural

network solutions is based on a CNN (convolution neural network) architecture. This model is actually,

a combination of a CNN and ANN in the sense that on top of a CNN an ANN is connected. The model’s

architecture is illustrated in detail in Figure 22. The input Is a 2d tensor (12x28, SequnenceLength x

number_of_features) that is fed into a convolution layer of one dimension (Conv1D). This layer was

set to produce 32 different kernels (filters = 32) and kernel size was tuned to 1 (kernel_size = 3). Various

values were tested to tune the filter and kernel size for optimal results. The filter and kernel sizes that

were utilized were [32, 64, 128] and [3, 5, 7, 9] respectively. There was no improvement though in the

test MAE.

Figure 22 CNN structure

The performance that has been achieved for this architecture is 0.44 of test MAE. There was a slight

enhancement compared to the ANN solution, but the CNN model is much more computationally

intensive than the previous one. The shape of the Conv1D is (None, 10, 32). The first dimension (None)

corresponds to the batch size and is configured to 64 (batch_size = 64) at runtime.

31

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 23 Tanh(x) activation function

The second dimension is 10 and is calculated as follows. Let S be the second dimension of the output

convolution layer, then S = SequenceLength – kerne_size + 1, based on the fact that padding and stride

parameters were set as ‘valid’ and 1 respectively. As it was previous declared the value of the third

dimension is determined by the desired number of the filters layer. The convolution layer is followed

by a single dimension MaxPooling Layer of size 2. The operation of this filter is quite simple. For each

of the extracted filters, every two elements are compared and the bigger one is chosen. An example

of this process is shown in Figure 24 as follows

Figure 24 MaxPooling Layer operation

This structure of a convolution (Conv1D) layer followed by a pooling layer (MaxPoolingLayer1D) was

utilized repeatedly 2 and 3 times (Conv1D + MaxPooling1D + Conv1 +…) but none of the repetitions

worked effectively (based on the performance metric). It is important to note that the activation

function of the Conv1D is ReLU Consequently a Flatten layer was used to convert the input 1D tensor

(matrix) 5 x 32, into a 1D tensor (vector) of 160 elements. Then, the ANN architecture from the

previous design was employed and placed on top of CNN model. The only difference of this ANN model

compared to the previous one, is the utilization of the tanh activation function.

Since the remaining architecture of the CNN model is based on the previously presented ANN

approach (3 dense layers of 16 nodes combined with dropout layers of 40%), no further explanation

needs to be given. The sum of all the given parameters is equal to 5,847 total parameters. The number

of parameters of each dense layer is calculated as, dense_layer_params =

layer_nodes*(prev_layer_nodes + 1). On the other hand, the parameters of the convolution layer is

computed as, conv_params = kernel_size * num_features * filters_size + filters_size. Thus, the total

number of parameters in the convolution layer are equal to 2,720 elements.

32

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 25 Training and Validation Process

Figure 26 Predicted vs Ground truth samples of test set

The training and the validation process are illustrated in Figure 25 for each epoch, 0 until 200 of them.

The test MAE (Mean Absolute Value) is equal 0,44. There is a minor improvement here in terms of

performance, but the first approach (ANN) is selected due to its inherit simpler design complexity. As

it could be seen, the validation metric converges in a more efficient way than the training one. Figure

26 depicts the predicted versus the ground truth samples for each of the training samples. Red dots

(predicted values) vary from minus one to plus one mainly, which means that the model cannot predict

values that diverge significantly from that region.

Finally, it is important to summarize all the parameters settings that were adopted to tune our models

to get optimal results

• Sequence Length = 12

• Target = 6

33

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

• Sampling rate = 1

• Batch size = 64,

• Optimizer = Adam,

• learning rate = 10e-5,

• Loss function = MSE (Mean Square Error),

• Accuracy = MAE (Mean Absolute Error),

• Epochs = 200

3.3.4. Other approaches

Energy consumption prediction is often focused on forecasting daily consumption profiles through

regression and time series models. In the Industry 4.0 framework, the experimental measurements

for the energy consumption are in fact characterized by high dimensional formats that can be well

represented as functional data or profiles for each day [2]. To predict energy consumption profiles,

the generalization of the multivariate regression analysis to case where the covariates and/or the

response have a functional form, can be made (it is referred to as functional regression [3]). Functional

egression models allow for the prediction of the energy consumption of the next day based on the

information available up to the current instant and covariates. The main advantage of these models is

their suitability for dealing with high-dimensional data observed on possibly uneven, non equidistant

time points, with noise. The application of these models in the EnerMan project will be shown in D4.1,

Section 5.3 (Integrated approach for system description and statistical-deterministic analysis).

3.4. Intelligence Acceleration using Hardware assistance

The main purpose to implement an algorithm in hardware is either to accelerate its performance or

for portability reasons. A hardware implementation can be placed on edge and run it independently

from other applications. It is important that there is no need to dedicate either a GPU or CPU for that

application, although, the main reason is to achieve optimal performance in terms of speed. The

process that was followed to obtain hardware implementations is based on an open-source

framework called hls4ml. In this subsection we describe analytically the hls4ml framework, all of its

capabilities and the whole workflow process that has been employed in order to obtain the RTL

(register transfer level) design of the subsection 3.3 selected DL model.

3.4.1. The open-source framework hls4ml

hls4ml is a Python package for implementation of machine learning inference in FPGAs. It creates

firmware implementations of machine learning algorithms using high level synthesis language (C++)

with the backend based on Vivado-HLS. It translates traditional open-source machine learning package

models into HLS compatible code format that can be configured accordingly, depending on the case.

A list of supported ML codes and architectures, including a summary table is below. Dependences are

given in the Setup page. hls4ml supports Keras, Tensorflow, QKeras, PyTorch and Onnx libraries. For

this work, Keras package was employed. The neural network architectures that the framework

supports are convolution based, either 1D or 2D, and fully connected networks (ANN, multi-layer

perceptron).

The workflow procedure is straight forward and could be described as follows. First, a yaml file (.yml)

needs to be created containing the configuration of all the necessary parameters. YAML file is a data

serialization language that is used for writing configuration files for various programming languages.

Figure 3.6.1 shows a basic example of yml configuration. The only files that need to be provided into

yml file are, first the python trained model as a json file and second, the extracted weights as h5 file.

Keras or h5 are two different types of files that Keras package can store the model weights.

34

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 27 yml file example

In the above figure, a basic example is illustrated. There are several configuration options that must

be declared and are analytically described below:

• KerasJson/KerasH5: for Keras, the model architecture and weights are stored in a json

and h5 file. There is support for keras model’s file obtained by model.save() Python

command. In this case, the h5 file is supplied in KerasH5: field.

• InputData/OutputPredictions: path to the input/predictions of the model. If none is

supplied, then hls4ml will create artificial data for simulation. Numpy data files are

supported.

• OutputDir: the output directory where the HLS project appears

• ProjectName: the name of the HLS project IP that is produced

• Device: the FPGA part number targeted, here it’s a Xilinx Virtex-7 FPGA

• ClockPeriod: the clock period, in ns, at which the algorithm runs

• IOType: options are io_parallel or io_stream defines if the algorithm uses pipeline

technique or not

• ReuseFactor: in the case that pipeline is used, this defines the pipeline interval or

initiation interval

• Strategy: Optimization strategy on FPGA, either “Latency” or “Resource”. If none is

supplied, then hl4ml uses “Latency” as default. Note that a reuse factor higher than 1

should be specified when using “resource” strategy.

• Precision: this defines the fixed-point precision of the inputs, outputs, weights and

biases. It is denoted by ap_fixed<X,Y>, where Y is the number of bits representing, the

integer part, and X is the total number of bits. Additionally, integers in fixed precision

data type (ap_int<N>, where N is a bit-size from 1 to 1024) can also be used.

At HLSConfig field, the general configuration of the model is described. But there is an option to

further configure it in a more fine manner employing a per-layer configuration. As it is shown, the

dense layers have a different setup when using resource Strategy where ReuseFactor equals 2, while

the remaining model utilizes a pipeline approach.

The yml file that has been created for our ANN architecture described in section 3.6 is depicted

in Figure 28. The clock period has been set to 5ns and IOType was selected for the io_stream (no

pipeline) and the strategy was configured as Resource in order to minimize the resource utilization of

35

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

the FPGA device. A ReuseFactor equal to 4 was selected meaning that for every X concurrent

operations, x/4 modules (i.e. DSPs) are employed. Finally, the precision that was chose is equal to 14

bits total, with 6 MSBs representing the signed integer part.

Figure 28 ANN configuration yml file

Thereafter, using command line interface (CLI) and yml file, the HLS project is created. Then, the

project needs to be built using the hls4ml build command. Although, there are many options which

may be enabled during the built process, the –all one (means that all steps are to be done) was chosen

for the ANN and CNN architecture. A detailed list of them that the designers can enable/disable are

presented below

• -c, --csimulation: run C simulation.

• -s, --synthesis: run C/RTL synthesis

• -r, --co-simulation: run C/RTL co-simulation.

• -v, --validation: run C/RTL validation.

• -e, --export: export IP (implies -s)

• -l, --vivado_synthesis: run Vivado synthesis (implies -s).

• -a, --all: run C simulation, C/RTL synthesis, C/RTL co-simulation and Vivado synthesis.

• --reset: remove any previous builds

The ANN architecture design project has been successfully built. The desired clock period of 5ns have

been achieved and RTL implementation can operate at 200MHz frequency. The Latency of the design

is 104 cycles. Given that the design runs at 200MHz, this leads to an impressive time delay of only 520

nsec.

Figure 29 Latency of ANN design

The resources that are utilized to implement the ANN design are shown in Figure 30 analytically. In

this context, an explanation of the available resources of an FPGA is briefly given. Look-Up-Tables

36

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

(LUTs), can perform arbitrary logic functions on small bit width of 2-6 inputs. These can be used for

Boolean and arithmetic operations as well as for memory purposes.

Figure 30 Resource utilization of ANN design

Flip-Flops registers on the other hand can store data in sync with the clock pulse. The most desirable

FPGA components for Neural Networks architectures are Digital Signal Processors (DSPs). DSPs are

specialized units for arithmetic operations like multiplications and additions. They are faster and more

efficient than using LUTs for these types of operations. BRAMs are small, fast memories - RAMs, ROMs,

FIFOs (18Kb each in Xilinx). Memories that are created using BRAMs are more efficient than using

LUTs. An FPGA like Virtex-7 has nearly 100Mb of BRAMs.

Figure 31 Configuration yml file of CNN design

The implemented RTL design employs 573 BRAM of 18K, 1476 DSP units, 85,519 Flip Flops and 55,879

LUTs. In terms of FPGA available resources, the design occupies 19%, 41%, 10% and 12% of the

aforementioned resource types respectively. It is obvious that the high utilization of DSPs units is the

main reason of the low latency result.

37

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 32 Latency of CNN design

The second architecture which was implemented in hardware was the CNN based one described in

detail in section 3.3. As it is shown in the yml configuration file in Figure 31, it was necessary to alter

two configuration option compared to the yml file of the ANN design (Figure 28). First, the clock period

needs to be changed to 8 ns and the resource factor was set at 8. The resource factor implies the

number of multiplications performed by each multiplier. Those changes were necessary in order to

implement the RTL project successfully.

The CNN implementation constrained at 8ns, produce an RTL design of 125MHz frequency but the

main issue of this hardware model is the achieved latency of 4,418 cycle (see Figure 32) which is far

higher compared to the ANN implementation. In Figure 33, the resource utilization of the CNN

implementation model is illustrated. This work makes use of 325 Block RAMs, 770 DSP units, 56,493

Flip Flops and 79,740 Look Up Tables. Based on the FPGA available resources these results mean that

11%, 21%, 6% and 18% of the above resources are utilized respectively.

In terms of performance, the ANN implementation outperforms the CNN one, because it operates at

a higher frequency (60% faster) and needs far less cycles to output the result. Based on the resource

utilization though, the CNN hardware outperforms the ANN implementation since it utilizes almost

42% less BRAMs, 49% less DSPs and 40% less Flip Flops and only in terms of LUTs, the CNN circuit uses

50% more.

Overall, the ANN hardware design is suggested since the main targets for that work were the

frequency and latency metrics.

Figure 33 Resource Utilization of the CNN design

38

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

3.5. Federation based processing mechanism

The existing methods require large amounts of high-quality supervised data of the testing machine for

training an effective diagnostic model. In real industrial scenarios, labelled condition monitoring data

are usually difficult and expensive to collect. Different companies and factories have similar types of

working machines, and they usually have their own supervised datasets for fault diagnosis. It is thus

promising to integrate the data of similar devices across different parties for establishing a powerful

fault diagnosis model.

We assume that multiple clients are included in the federated learning system, and each client has

insufficient training data which fail to build its fault diagnosis model independently. In order for the

federation scheme to succeed, it is imperative that the fault diagnosis tasks of all the clients are

identical, which indicates that different clients share the same label space and that the same fault

diagnosis model is shared by the server and different clients.

Thus, the federation scheme, as seen in Figure 34, is comprised of a federation server and multiple

clients. The federation learning process, as seen in Figure 35, starts with the server creating the ML

model architecture, such as the number of CNN layers, Fully Connected layers and their corresponding

activation function amongst others. The server will instruct the clients with the model to work. The

clients having a view only of their own dataset will generate a local limited model which in turn is sent

to the federation server. The federation server will aggregate all the models into a new one and will

send it to the clients to continue the learning process. This will continue until the global model has

reached an acceptable accuracy level and will terminate the learning phase.

Figure 34 Federation scheme

39

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 35 Federation learning process

To correctly transport all models to and from the server and clients, we designed a very simple

application protocol, using TCP as transport protocol, as shown in Figure 36. Depending upon the Type,

the messages have different connotations. For Type equal to:

0. The server is sending the initial model to the newly connected client.

1. The server is sending the updated global model to all connected clients.

2. The client is sending a learned model.

3. The server is notifying the clients that the learning phase is complete.

4. A client is requesting connection to the server and a Client ID.

5. The Server is sending the Client ID (Sender ID will contain the Client ID)

40

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 36 Simple protocol for sending ML models

The implementation of the complete process is shown in Figure 37. Initially (#1) the server and clients

are instantiated. Upon instantiation of a new client, it will attempt to connect to the server (#2). Any

newly connected client will be assigned a ClientID, which will be sent to the client via the SenderID

field, in order for the server to keep track of which client has sent a model and to which it has already

sent any response. The server having created the initial global model or having the evolved global

model after a couple of learning phases have run, will send the current global model to any newly

connected client (#3). The clients then train the next round of their local model (#4) and send the

results to the server (#5). The server will aggregate all models and will calculate the next round of the

global model (#6). Then the server will either send a termination message to the clients (#7) if the

accuracy or rounds have reached a specific limit or will send the current global model (#7) and the

process will continue from step 3.

Figure 37 Implementation details of federation process

3.6. Edge node functionality and Configuration updates (reconfiguration)

One of the key characteristics in EnerMan is the ability to add new functionality in Edge nodes or

reconfigure already installed ones. New edge node functionality can reside on a remote server and

41

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

would require a mechanism to install this functionality. This functionality could either be programs

compiled for the specific edge node, e.g., the Ultra96v2, or hardware functionality for on board FPGAs

built by tools such as Xilinx’s Vitis. The latter can be defined as xclbin, IP cores bundled in a unified

container that can hold outputs of hardware compilers (SDAccel xocc) as well as software compilers

(processor ELF formats for MPSoc).

To download code and receive the output we leveraged Python’s remote processing call, the rpyc

module. Using this module, the client, which is manifested by the remote server hosting the program,

can upload the necessary code to the rpyc server, which is manifested by the edge node waiting for

the new functionality, and then start the program as if the client was local to the edge device.

Figure 38 depicts the initial setup, where the edge device’s IP is an input argument, and the setup

creates the rpyc connection. Figure 39 demonstrates the code for uploading software (vadd_hls) and

hardware (vadd.xclbin) code to the edge node and then executing and receiving the result.

Figure 38 Setup of the rpyc connection

Figure 39 Download and run functionality

42

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

4. EDGE NODE SECURITY ASPECTS

As described in D2.1, traditionally, the Industrial Control Systems (ICSs) that are employed to control

an industrial process, often referred to as Supervisory Control and Data Acquisition (SCADA) systems,

are based on implementations lacking cyber-security considerations and practices. Reasons for this

can be found in the lack of interoperability between different vendors and/or the adoption of

proprietary protocols and data formats. Also, because, in general, these systems are "geographically

isolated" with little to none connection to the outside networks. Ensuring interoperability between

platforms and devices has two major challenges, i.e., their seamless operation and their security. The

weakest link in this chain, from a cyber-security perspective, are the endpoints on SCADA systems, i.e.,

the Programmable Logic Controllers (PLCs) with their sensors and actuators. Not only is their firmware

full of flaws with no regular update policy, but also, many of the most popularly used communication

protocols lack authentication or encryption [4].

In legacy industrial deployments, the isolation of the SCADA deployments had been a viable option,

however, in today's interconnected and technologically mobile world, true isolation is nearly

impossible. It is, therefore, crucial that in EnerMan we tackle edge node security aspects efficiently

since we are planning to collect data form the use case sites by interconnecting the edge nodes to the

targeted ICSs.

4.1. Security Architecture

A high-level representation of the EnerMan security architecture is shown in Figure 40. Overall, its

purpose is twofold. On the one hand, it is aimed at preventing malicious activities from becoming

successful, i.e., it aims at reinforcing the flow of data such that they become immune to infection by

malicious activity. The second involves the aspect of detection and, in this particular case, what we

have is a mechanism for picking out unwanted activity that has managed to become part of the data

flow.

The architecture is comprised of several levels, each of which correspond to a different part of a typical

system that is going to use the EnerMan framework. Hence, there is the Industrial Data, which

originate from the fringes of the architecture, e.g., sensor modules as edge devices in a factory, the

Secure Gateway that is a little further up the hierarchy, i.e., the edge node of the system, and, finally,

the cloud server.

At each of these points, as well as in-between, EnerMan is going to implement security features that

will setup a strong security mechanism. Hence, starting from the edge devices, EnerMan utilises an

intrusion detection mechanism named I2DS. This is implemented on MPSoC technology using the

EnerMan edge/end node execution environment and is positioned right at the entry to the Data

Aggregator, also co-hosted at the MPSoC. The I2DS operates on the data that are flowing in from the

various edge devices used in the context of the various EnerMan use case providers’ industry setups.

Having filtered the data and flagged any potentially malicious activity, the data is then processed inside

the MPSoC by the data aggregator and, subsequently, it is encrypted for cyber attack prevention

purposes.

The encrypted data are going to fulfil TLS secure session communication protocol requirements, which

will assist in the consolidation of a prevention mechanism between the MPSoC (edge devices) and

Gateway (edge node) layers of the architecture. Just prior to the introduction of the MPSoC data into

the gateway, a second Intrusion Detection System (IDS) mechanism is deployed. Hence, a detection

mechanism just prior to the EnerMan gateway ensures that the encrypted data have indeed not been

43

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

corrupted. Subsequently, an Intrusion Prevention Systme (IPS) mechanism follows on the IDS-

processed data at the gateway-level of the architecture.

Hence, and similar to the security steps followed at the EnerMan edge/end node MPSoC, the EnerMan

gateway(s) will encrypt the data that are to be propagated further up the architecture, i.e., the

EnerMan cloud devices, by ensuring that the TLS protocol standards are met for prevention purposes

in the context of edge node and cloud communication.

Figure 40 The EnerMan Security Architecture

4.2. Security Mechanisms

In this subsection we extend the work that has been presented in D2.1. Please refer to the D2.1

deliverable for some of the concepts described in section 4.2

4.2.1. Cybersecurity Attack Detection

I2DS: Industrial Intrusion Detection System

I2DS is the EnerMan intrusion detection mechanism that will be deployed across the system and at its

very edges, i.e., it is the intrusion detection mechanism that will operate on the data coming in from

the architecture’s edge devices. I2DS is going to be hosted by the EnerMan edge/end node Multi-

Processing System-on-Chip (MPSoC) devices, which employ Field-Programmable Gate Array (FPGA)

technology. Hence, this first layer of intrusion detection capability is going to be implemented directly

on (reconfigurable) hardware using the EnerMan edge/end-node execution environment described in

Section 2.

Specifically, I2DS is comprised of optimised modules that implement machine learning models for

intrusion detection. The modules use rules for string searching that are appropriate for the particular

industrial environments’ data. The implementation of the ML model’s architecture is to be developed

using suitable frameworks so that the final design not only fulfills the functional criteria of the ML

44

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

model, but also offers satisfactory performance, such as a high data throughput as well as reduced

power consumption.

4.2.2. Cybersecurity Attack Prevention

Application Gateway

The WSO2 API Manager (APIM) is an API Gateway. Every call to APIs is rerouted to first pass through

the WSO2 APIM which then forwards the request to the appropriate endpoint. This provides utilities

such as the ability to allow/deny requests based on authorization status, enforce policies, modify the

responses and requests’ contents, and limit traffic, among others.

Figure 41 The Application Gateway overall architecture and the API Management.

Figure 41 shows the structure of the API Management component. Users can make requests to the

API Gateway either through a frontend, or directly. The gateway stands between the user and the

backend, handling the authentication/authorization aspects. Developers may also use the endpoints

in their own applications. This is made easier through the developer portal, a “storefront” for APIs

where their specification is published to help developers incorporate it into their own tools.

Messages that reach the API Gateway (Figure 42) are processed as follows:

1. When a request hits the API Gateway, it is received by the HTTP/HTTPS transport, that is
responsible for carrying messages in a specific format. The transport provides a receiver and
a sender (for receiving and sending messages accordingly).

2. The receiving transport selects a message builder, based on the message's content type, and
uses the selected one to process the message's raw payload data and convert it into a
common XML, which the Gateway mediation engine can then read and understand.

3. The request is passed through a set of handlers that applies the quality of services on the
request message. Furthermore, it enforces security, rate-limiting, and transformations on API
requests if applicable.

4. After all the requests are routed to the backend endpoint, a message formatter (selected
based on the message's content type) is used to build the outgoing stream back into its original
format depending on the message.

5. The transport sends the message out from the Gateway.

45

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 42 Gateway Message Flow

WSO2 APIM supports REST, SOAP, GraphQL, or Streaming APIs. For REST APIs, the WSO2 admin can

either import already existing APIs in OpenAPI (formerly Swagger) format, or design and prototype a

new API from scratch (eg. Figure 43).

Figure 43 Welcome screen on WSO2 APIM, showing the admin all the available API types.

Following either import or creation, the admin can then alter the Runtime Configurations for this

specific API (Figure 44). Options exist for enforcing security policies (HTTP, HTTPS, or both), the type

of security (OAuth, Basic, API Key), Cross-Origin Resource Sharing (CORS) configuration, request and

response validation against the API definition, and Message Mediation for acting on the content of

requests and responses.

46

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 44 Runtime Configurations for an API

Figure 45 APIs appearing on the developer portal

APIs created by or imported to the WSO2 APIM, also appear on the WSO2 developer portal (Figure

45). There, developers can search APIs, view their documentation, try them out through a swagger-

like interface, and also view available SDKs (Figure 46).

47

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 46 Available options for an API published on the devportal.

Main Features

The Gateway supports the following features to control access and enforce security.

• Supports JWT, OAuth2.0, Basic Auth, API Key, Mutual TLS, and more.

• Supports in-memory subscription validation, that decouples runtime dependency on the Key
Manager.

• Provides multiple Key Manager support for authentication.

• Restricts API access tokens to domains/IPs.

• Validates APIs payload content against schemas.

• Applies additional security policies to APIs (authentication and authorization).

• Supports all standard OAuth2.0 grant types and allows extensions and additions to grants.

• Works seamlessly with third-party OAuth2.0 providers, standard, or proprietary.

• Allows blocking subscriptions due to non-payment, API abuse, etc.

• Associates API to system-defined service tiers for quotas and rate-limits.

• Generates JSON web tokens for consumption by back-end servers.

• Leverages XACML for entitlements management and fine-grain authorization.

• Provides threat protection, bot detection, and token-fraud detection.

• Supports detection of abnormal system use through artificial intelligence and machine
learning.

Identity Server

In addition to the Application Manager, WSO2 provides identity and access management through its

Identity Server (IS). The IS can be used directly by administrators (or other users if proper authorization

was provided), through its Management Console. Apart from the registered users, IS can be used as

an identity provider for third party systems that have their own set of users.

There are 3 main services the IS offers:

• Authentication, the process of identifying an individual. Authentication merely ensures that
the individual is who he or she claims to be.

• Identity Administration, the process of creating new and modifying or deleting existing
identities as well as managing the security entitlements associated with those identities.

• Security, the process to provide secure access to resources based on standards and model for
security

All these functionalities are centralized to support the coordinated usage of the components
and allow their interoperability. Once the users provide their credentials, they are

48

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

automatically authenticated on all applications enabling a Single Sign On (SSO) scenario
between multiple heterogeneous authentication protocols.

The IS needs to be configured and customized to integrate the different components,
applications and services. The various components need to be registered in the IS as service
provider and linked to the involved authentication protocol. The Open ID Connect and the
SAML 2.0 authentication protocols are involved in the integration of the current
components.

The following figure (Figure 47) highlights one of the configuration steps needed to register
one of the components on the IS.

Figure 47 Configuration of a service provider with the different possible authentication protocols

To start using the services offered by the IS the generic application needs to be registered in the IS.

The registration process of an Open Id Connect (OIDC) relying party (RP) has the following steps:

• Registration of the RPs in the IS (redirect URL and Relying Party name needed).

• Communication of ClientId and secret values to the Relying Party.
 The registration process of a Service provider using the SAML 2.0 authentication protocol has the

following steps:

• Registration of the SP in the IS.

• IS/SP Metadata exchanging.

The logic

This API provides a secure method to protect resources. When an API consumer want to access these

resources the API owner, following the OAuth2.0 specification and using the exposed API can validate

the access to the resources.

49

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Following the OAuth2.0 specification, the API owner (Resource owner) is responsible for preventing

unauthorized users from accessing an API (or a Resource in general). For that to be possible the

specification prescribes that API consumers send a valid OAuth2.0 access token along with each API

call. Such access token must be sent as the HTTPS request parameter. Once the API Server gets the

call it needs to validate the access token against the OAuth2.0 Authorization server, before processing

the request and replying to the consumer API. The following figure (Figure 48) provides an overview

of the process, it contains the authentication process, steps 1-8, and the protected API call, steps 9-

12.

Figure 48 Authentication Process and API protection

50

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

5. DEMONSTRATION REPORT

5.1. Federated Learning edge node processing mechanism

As discussed in Section 3.5 and seen in Figure 37, the Federated Learning edge node processing

mechanism is comprised of a federation server and multiple clients. In this demonstration report, we

will showcase two clients connecting to a federation server and will attempt to reach an accuracy

threshold of 70% within at most 5 rounds (we consider this accuracy level sufficient for the given

problem). In effect, for the federation server to signal the end of the learning phase, either the global

model will exceed an accuracy level on the validation data of 70% or the federation process, i.e. clients

sending their model to the server and the server handing out a new global model, will stop after five

rounds.

For testing purposes, the dataset is one big spreadsheet file that is appropriately split into regions.

Each client is randomly sampling different part of that excel file and in effect each client sees a

complete different set of data.

Figure 49 shows the initial setup of the server that calls the creation of the global model, as seen in

Figure 50 which initiates an instance of the CNN class defined in Figure 51. Our CNN model is

comprised of two sequential layers of 1D convolution with a batch normalization through a leaky ReLU

activation function with a dropout probability of 50%, followed by two linear transformations. Once

these have been setup, the server is ready to accept connections from clients.

Figure 49 Initial setup of the server

51

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 50 Creation of the global model and test loader

Figure 51 Class model of our CNN

52

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 52 showcases the high-level overview of the process. While the server has not finished, it will

initially wait for new clients to connect or will wait for new models. While the server is awaiting for

clients to complete their learning phase, as seen in Figure 53, it can also accept new incoming clients

cand send them the current global model. Once all models have been received it will aggregate the

clients’ models into the new global model and check the accuracy. This process will continue as long

as the accuracy or the rounds threshold has not been reached.

Figure 52 High level overview of server process

53

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 53 Server handling clients

Figure 54 and Figure 55 showcase the server lifecycle. Initially the server starts and await connections

at the TCP port 5000. Two clients connect and are assigned specific IDs, 1 and 2. The clients (1 and 2)

once connected and identified receive their models and start the training process. Once they are done,

they send the model to the server, which aggregates and tests the new global model. If the accuracy

level is low, the model is sent back to the clients and the process continues. At some point a new client

join, is connected and assigned number 3. In this demo, as a case study, the accuracy threshold of 70%

is not reached and after 5 iterations the learning process ends.

54

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 54 Server initialization and connection from clients

Figure 55 Server termination

Figure 56 and Figure 57 demonstrate the connections of Client1 and Client2 to the server, getting the

initial model, starting the training process, and ending after five rounds have passed.

55

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 56 Client1 learning process

56

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 57 Client2 learning process

Figure 58 showcases the connection of Client3 after a couple of rounds have passed. Client3 does not

start from the beginning, rather catches up with the Client1 and Client2 and continues the training

process from the current global model that the federation server has. Client3 will terminate at the

same time as Client1 and Client2 as the federation server has general knowledge of the current round

and when the learning process has to end.

57

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 58 Client3 learning process

5.2. Hardware Security Token (HST) capabilities and Secure communication using

Quantum-Safe TLS

5.2.1. HST concept and overall usage

The HST has been briefly described in D2.1 regarding its overall concept and capabilities. In this

subsection we provide a more practical insight of its usage and how it is extended to support quantum

safe security.

The HST is configured as a hardware/software codesigned application on the EnerMan intelligent edge

node which is based on ARM microprocessors (e.g., ARM Cortex A family) and the EnerMan execution

environment (an appropriate Linux distribution). The HST communicates with the underlying Linux OS

through an external communication API. This interface is responsible for setting up the correct usage

configuration of the HST during runtime through Command Line Input (CLI) commands issued for

execution.

A software-based Crypto-Library is the core of the HST functionality, handling the high-level processes

required for the implementation of most of cryptographic protocols and functions available by the

HST. These functions include, but are not limited, to the generation and validation of digital signatures

(ECDSA and postquantum cryptography algorithms) and certificates (X.509), key agreement schemes

such as Elliptic Curve Diffie Hellman Ephemeral (ECDHE), Key encapsulation Mechanisms,

encryption/decryption based on AES (AES-CBC, AES-CCM, authenticated AES-GCM) and authenticated

message integrity schemes (HMAC). Depending on the availability of a reconfigurable FPGA Fabric by

the device in use by the HST, the various cryptographic operations are hardware accelerated by

58

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

dedicated IP cores. These cores accelerate asymmetric cryptography primitives and can be either fully

customized hardware designs developed with the help of a Hardware Description Language (VHDL,

Verilog) or accelerated algorithms with the use of High-Level Synthesis (HLS) tools. At runtime, the

included driver for the cores in the software stack handles the propagation of the necessary data to

an accelerator and polls for a ready signal to read back the correct output and complete the

cryptographic operation. Adopting an HLS approach, where operations are hardware accelerated

using built-in processes, can lead to a much faster development time compared to a fully custom

design without sacrificing a lot of performance speedup.

HST General Commands

The basic usage of the HST can be summarized by the following command structure:

./hst [options] [parameters]

By executing the above command, the HST polls the Linux CLI for the following argument operators

(options) coupled with their corresponding parameters.

 Options:
 -h Display usage syntax
 -i Select input file
 -o Select output file
 -l Set syslog remote server IP
 -p Set syslog remote server port
 -c Parse cryptographic command
Analyzing the above arguments into more detail, it is observed that with the[-i] operator, the HST

loads an input file to be utilized for the execution of the various cryptographic protocols. Likewise,

with the [-o] operator, a file is generated containing the output of a cryptographic command. In both

cases, the type of files loaded or generated by the HST are defined accordingly by the nature of the

cryptographic command under operation. The next pair of arguments is usually utilized together, as

with [-l] and [-p] the IP and the port of the remote server is defined that will be used as log entry data

collector, receiving JSON log alerts generated by the HST Logger in case of an unwanted event.

The variety of cryptographic protocols and algorithms that the HST supports cannot be adequately

described and executed by the general format of the CLI commands presented above. For this reason,

the [-c] argument encapsulates by itself a second level of CLI inputs and arguments linked exclusively

with the execution of the various cryptographic functions and the necessary data for their completion.

This encapsulated command is being parsed as a parameter of the [-c] argument, in the format [-c]

“crypto_command”. There is a broad range of cryptography commands as shown below:

Symmetric Encryption/Decryption

For encryption and decryption functionality, the HST supports the common AES standard. The

available modes of operation are both the Block Cipher Mode of AES-CBC and the authenticated

encryption mode of AES-GCM. In order to speed up the encryption and decryption performance of

these functions, the HST includes the acceleration component embedded as a coprocessor to the

ARM-A53 processor. For example, a typical AES-GCM encryption command would be given as follows:

./hst [-i] [data_file] [-o] [ciphertext_file] [-c] “aesgcm [-e] [key_file] [nonce] [aad]”

In this example, an authenticated encryption using AES-GCM is taking place, encrypting the data

stored in the data_file and using the key stored in the key_file. The nonce and the Additional

Authentication Data (AAD) are parsed from the command line as HEX numbers with the prefix “0x”.

This prefix is added to any variable that needs to be used as a raw number, and the HST handles the

59

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

internal parsing and tokenization of the whole cryptographic command embedded in the quotation

marks. The encrypted output can either be directly printed on the command line or stored in a file

marked by the [-o] operator (in this case the ciphertext_file).

Message Integrity

Most embedded security applications require data integrity capabilities. The HST supports a variety of

message integrity algorithms, like SHA128, SHA256, SHA384 or authenticated message integrity in the

form of HMAC_SHA256. A sample command syntax follows:

./hst [-l] [dest_IP] [-p] [dest_port] [-i] [data_file] [-c] “hmac [key_file] [hash]”

In this example, it is assumed that we want to validate a given hash product with the same key it was

produced. The hash is parsed in HEX form, and upon completion, the HST computes the hashed value

of the data_file and compares it with the parsed hash. In case of a hash mismatch, the HST Logger

generates a JSON log for a “Message Integrity failure” event.

Elliptic Curve Cryptography

Used mainly for authentication purposes, Elliptic Curve Cryptography (ECC) is widely adopted in the

embedded domain by offering lightweight solutions for digital signatures and certificates compared

to the more traditional RSA algorithm. Thus, the HST supports digital signatures using the Elliptic Curve

Digital Signature Algorithm (ECDSA), hybrid encryption with the Elliptic Curve Integrated Encryption

Scheme (ECIES), as well as key agreement protocols with Elliptic Curve Diffie-Hellman (ECDH). A

sample command for issuing digital signatures with ECDSA is presented below:

./hst [-l] [dest_IP] [-p] [dest_port] [-i] [data_file] [-o] [signature_file] [-c] “ecdsa [key_file] [-s]”

The file containing the ECDSA signature is the product of this command, where an EC key (key_file) is

used for digitally signing the data contained in data_file. The prefix [-s] denotes the signing procedure.

Likewise, an ECDSA digital signature verification is shown in the below example command:

./hst [-l] [dest_IP] [-p] [dest_port] [-i] [data_file] [-c] “ecdsa [key_file] [-v] [signature_file]”

As can be easily deduced, the signature_file generated by the signing function is now an input

argument of the [-v] operator. If the result of this function deems the signature invalid, the HST Logger

generates a log alert with an “Authentication Failure” identifier. This log is both stored locally and sent

to a remote server with IP and port issued by the [-l] and [-p] operators respectively.

Certificate Generation/ Validation

An additional functionality of the HST is the fact that it can act as a pseudo Certificate Authority (CA).

The X.509 certificate protocol stack, alongside the encoding requirements presented by the ASN.1

encoding algorithm, are present in the HST and provide the functionality of generating and validating

X.509 certificates. This capability has the potential to aid use-cases and application scenarios where a

lightweight certificate management solution can provide authentication and trust between multiple

entities. Given a scenario of that type, an assumption that must be made is that there must be an HST

considered as a pseudo-CA, able to provide basic and lightweight certificates. A different HST that

wants to own a certificate should firstly generate and transmit a valid Certificate Signing Request

towards the CA. After that step, the CA can generate a certificate containing the requester’s Public

Key (PK). In the example below, a certificate validation operation takes place, validating with the CA’s

PK key whether a X.509 certificate is valid. If the validation is successful, the certificate’s owner’s PK is

considered to truly belong to this owner, and it is extracted into its own key file ready to be utilized

quickly and with established trust for various authentication purposes.

60

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

./hst [-l] [dest_IP] [-p] [dest_port] [-i] [certificate] [-o] [public_key] [-c] “x509 [CA_key_file] [-v]”

With a method that has already been presented in the previous cryptographic examples, the

certificate file is loaded as a parameter of the [-i] operator. The [-v] enables the validation

mode for the x509 command, and upon success the output file that is generated contains the

certificate’s owner’s PK. If validation proves false for data integrity reasons or mismatches in

either the CA’s PK or the certificate PK, then the HST Logger is triggered with an

“Authentication Failure” identifier.

PostQuantum TLS 1.3 additions

The functionality of the Hardware Security Token has been enhanced by offering a modified version

of TLS 1.3 using post-quantum resilient Digital Signature Schemes. Basis for this implementation is the

robust and lightweight WolfSSL, an Embedded TLS Library, which has been in-house modified and

adapted to utilize post-quantum schemes. More details on how the Wolfssl library was enhanced with

quantum safe algorithms can be found in subsection 5.2.2

In order to properly setup a TLS connection, the certificate generation and validation capabilities of

the HST were upgraded with the addition of lightweight X.509 post-quantum certificates. Built for ease

of use in resource-constrained environments, these X.509 certificates are based on the Dilithium

Digital Signature Algorithm and contain only the necessary fields required for a correct certificate

validation.

Thus, WolfSSL’s source code was modified to handle the Dilithium certificates, and the library was

compiled onboard the HST using the arm-gcc-none-eabi toolchain for the ARM Cortex - A53 chipset.

The inclusion of the library to the HST is realized by the creation of a new command, focused on

instantiating the TLS connection between the host and the client. A sample format of such command

for the host side to setup a TLS connection and start listening for clients is presented below:

./hst96 -c "tls -svl TLS13-AES256-GCM-SHA384"

Likewise, for a secure file transfer to be realized to the host, a client can execute the following

command, where [input_file] is the path to the desired file and [Host_IP] denotes the Host IP:

./hst96 -i [input_file] -c "tls -cvh [Host_IP] -l TLS13-AES256-GCM-SHA384"

By using this format, we take advantage of the functionality of WolfSSL through the CLI provided by

the HST itself. In this instance, the agreed upon TLS encryption algorithm is the ARM accelerated

version of AES256-GCM.

5.2.2. Adding Quantum Safe TLS 1.3 in the HST

As quantum computers are expected to become realistic in the next few years, the

security/cryptography landscape will become completely different since all the traditional, widely

used, public key cryptography algorithms will no longer be considered secure. This expected dystopic

reality has pushed NIST (National Institute of Standards and Technology) to start in 2018 a competition

for quantum computing safe cryptography algorithms to could act as secure public key cryptography

standards in the presence of quantum computer attacks (stemming from Schor’s algorithm). The

competition draws to a close in 2022 and the new Postquantum Cryptography standard will be

announced. This will create an imminent need for implementation of the finalist (if not only the single

finalist NIST candidate) into existing security protocols. In EnerMan, taking into account that new

industrial control systems need to be secure and remain secure for a long period, we believe that this

new cryptography reality should be included in all EnerMan related solutions. This rational has led to

61

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

the adaptation of the extremely popular TLS 1.3 security protocol to a quantum safe version. In order

for the TLS protocol to operate with post-quantum algorithms, the first action to be performed is to

integrate an existing, secure, postquantum cryptography implementation like the PQclean library to

the protocol. Similarly, the PQM4 library provides implementations of PQC algorithms that are

optimized for ARM Cortex-M4 processors. As a starting point for a TLS library, we use the Wolfssl

library that is one of the few TLS libraries supporting the latest 1.3 version of the protocol even for

low-end embedded systems.

In the wolfssl library we integrate the lwIP library for supporting of network connectivity and then we

adapt the TLS protocol itself in order to support the Key Encapsulation Mechanism (instead of the

traditional key agreement schemes) provided by PQC schemes.

Apart from the code itself, the PQ algorithms require the usage of some cryptographic primitives.

Specifically, all of the adopted algorithms make use of the Keccak primitives, SHA-3 and SHAKE-256

[6] The provided implementations of these algorithms from the mupq project [5]has been adopted to

our work (a simple, C code implementation).

In order to make the wolfSSL TLS 1.3 messages on the handshake layer post-quantum compatible, the

following architectural adaptations/adjustements have been made in the wolfSSL library:

• Extension of ``Supported Groups",

• Extension of ``Signature Algorithms",

• Key Encapsulation Mechanism changes/support and

• Post-Quantum Digital Certificates support.

In Figure 59, the overall post-quantum adapted handshake message exchanges are presented in detail

indicating the PQ operations that are performed in each phase of the TLS handshake. One important

thing to note, is that wolfSSL, when acting as a server using RSA, immediately after creating a

signature, runs the Verify operation to check for signature faults. We mimicked this behaviour on our

PQ TLS adaptation. Although it may be redundant, it only adds a minor overhead on our

measurements. In the following subsections the changes are described in more details.

62

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 59 Created postquantum handshake version of TLS1.3 for embedded systems

Supported Groups

The ClientHello message, the first message that the client sends to initiate the handshake, consists of

several fields, one of which is the Extensions field. In this field, the client extends the information

provided by the rest of the ClientHello fields and plays a crucial role in TLS 1.3. One of the fields among

the Extension field, as shown in Figure 59, is the field Supported Groups. In this field, the client sends

a list of key exchange algorithms, as encoded identifiers (codepoints), in order of preference, so that

the server can select one of them to be used in the handshake. These identifiers are called, Named

Groups, and are defined for each supported algorithm by the protocol itself. To use post-quantum

algorithms, we have introduced our own Named Groups. In order for the wolfSSL library to be inter-

operable with other popular libraries, we decided to choose the codepoints that are being used by

Open Quantum Safe fork of OpenSSL library. The codepoints for the post-quantum algorithms are

shown in the following Table along with some traditional algorithms' codepoints.

63

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Table 1. additional TLS1.3 Handshake codepoints for PQC schemes

Signature Algorithms

Another useful field on the Extension field, is the ``Signature Algorithms'' field where the client

provides its preference on the signature algorithms that it supports, regarding the CertificateVerify

field. This means that this signature algorithm will be used to sign the transcript of the data exchanged

by the server and to be verified by the client. Similar to the extension ``Supported Groups'', apart from

the predefined codepoints for each algorithm we introduce our own codepoints for the post-quantum

digital signature algorithms that the PQ TLS wolfSSL can support. The codepoints that have been added

are compliant with the Open Quantum Safe fork of OpenSSL library, as shown in Table 1 along with

some of the traditional algorithms' codepoints.

Key Encapsulation Mechanism Support/Adaption

All the post-quantum algorithms that resemble traditional key exchange schemes participating in the

NIST competition are Key Encapsulation Mechanism (KEM) schemes. However, the key exchange

method that is used in TLS is the traditional (Elliptic Curve) Diffie-Hellman Key Exchange. In order to

adapt the key exchange to the post-quantum environment, in our proposed work the key exchange

mechanism of TLS 1.3 is transformed into a KEM scheme through some architectural adaptation.

Initially, the client generates a key pair and sends the public key to the server with the ClientHello

message. The server, using the client's public key, calls the Encapsulation function that produces a

Ciphertext, which is sent to the client with the ServerHello message, and a Shared Secret, that the

server keeps, as it is the actual shared key. The client, upon receiving the Ciphertext calls the

Decapsulation function, together with its Secret Key and produces the same Shared Secret as the

server. Now, both the client and the server, share the same key and have completed the key exchange

scheme. These exchanged messages are shown in Figure 59 as the Ephemeral PQ Key Generate, PQC

Encapsulate and PQC Decapsulate operations.

64

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Digital Certificates Support

Another important object that needs to be modified in order for the TLS to work with post-quantum

algorithms, is the digital certificate. These are objects that bound an entity, for example a server, with

its public key by introducing a signature from a trusted third party. This can occur repeatedly by

intermediate third parties, forming what is known as a ̀ `chain of certificates''. The X.509, the standard

that digital certificates usually follow on protocols like TLS., contains useful information about the

entity, like for example: the entity's name, email, web address etc, the issue and expiration date of

the certificate, the public key of the owner, the digital signature algorithm code that is used, the digital

signature itself, etc.

For the production of these digital certificates using post-quantum cryptographic algorithms, the Open

Quantum Safe's fork of OpenSSL was used. Through this library we generated digital certificates using

the OpenSSL's API with support for all the post-quantum algorithms that are evaluated in this paper.

Our goal is to produce a digital certificate for the server, as it is the only one to authenticate itself. To

achieve that, we introduced a base ``Certificate Authority'' (CA) that can issue other certificates

making a chain of trust up until the server. In our paper, this chain is of length two, as the server's

certificate is directly signed by the CA. To accomplish this, we created a digital certificate for the CA,

which is self-signed and then we produced a digital certificate for the server which is then signed by

the CA. Thus, a server certificate is produced, verifiable by our basic CA.

For the sake of simplicity, all the certificates in the chain employ the same signature algorithm each

time. This is also the case for both the certificate's signature and the signing operation on the

CertificateVerify message. For example, when measuring the performance of Dilithium2, CA's

certificate and server's certificate have Dilithium2 signatures and the CertificateVerify message is

signed using Dilithium2, as well.

5.3. AI Industrial Intrusion Detection

5.3.1. Set-up the board

For this demo we are using Pynq, which is an open-source initiative that facilitates the use of Xilinx

hardware devices, such as the EnerMan MPSoC. PYNQ offers and supports Python Productivity

bootable images that can be used on a variety of Xilinx development boards, which host the Zynq

MPSoC, e.g., Pynq-Z1, Pynq-Z2 and ZCU104. In addition, using the Pynq python library we can deploy

Python scripts on the reconfigurable hardware (FPGA) of the MPSoC. In this demo we use the ZCU104

evaluation board.

5.3.2. Set-up the host

The training phase is conducted on a host PC using the Xilinx FINN docker container with all the tools

and libraries for training the target AI model. Xilinx provides Jupyter Notebooks within the docker for

easier development. The host also needs Xilinx Vivado HLS installed, for the generation of the bitfile

that will be downloaded into the reconfigurable part (Programmable Logic (PL)) of the MPSoC, which

is linked with the docker container. To run the docker we just have to run on the host the command

./run-docker.sh notebook.

5.3.3. Train a quantized MLP with Brevitas

Quantize the dataset

The first step for a Quantized Neural Network (QNN) training is to binarize the dataset. In this demo

we are using the TON_IoT modbus dataset created by the UNSW Sydney. This can be achieved with a

python script called dataloader_quantized.py. This script drops irrelevant columns of the dataset such

as date, time, and the type of the attack and binarizes all the useful data for the training and keeps

65

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

the label that shows whether we have an attack or not for this data. With this dataset, for every input

of four integers, the dataloader creates 80 bits. The final quantized dataset is saved in a numpy

compressed format (.npz). This script also divides the dataset into training dataset (~80%) and test

dataset (~20%).

Define and train the QNN with Brevitas

For the training phase we use the quantization-aware training (QAT) capabilities offered by Brevitas.

Our MLP has four fully-connected (FC) layers in total: three hidden layers with 64 neurons, and a final

output layer with a single output, all using 2-bit weights. We also use 2-bit quantized ReLU activation

functions and apply batch normalization between each FC layer and its activation. The number of

epochs is 10 and the learning rate 0.01. The notebook gives us post-training information about the

training loss and test accuracy. The final test accuracy of the model is 0.88.

Figure 60 Training loss per iteration

Figure 61 Test accuracy per iteration

66

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Export ONNX model

Before exporting we can make some changes to our trained network (network surgery). In this case

we are padding the input. Our input vectors are 80-bit. The FINN compiler expects an ONNX model

as input. ONNX is an open format built to represent machine learning models and the output of our

model is presented below (Figure 62).

Figure 62 The exported ONNX model in Netron

5.3.4. Import model into FINN and compare it with Brevitas execution

To import the ONNX model into FINN, the wrapper around the ONNX model provides several helper

functions so we can extract information about the structure and properties of the model. Before the

comparison with the Brevitas execution, we need to prepare our FINN-ONNX model. With the Graph

transformations in FINN we transform the model into a synthesizable hardware description. Finally,

we can compare the two models by calling our inference helper functions for each input and

comparing the outputs.

67

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

5.3.5. Synthesis of the accelerator and generation of the bitfile

In this step we use the FINN compiler to generate an FPGA accelerator with a streaming dataflow

architecture from our QNN. With the use of the Vivado HLS we map all the layers of the model into

hardware description. Hence, we create a hardware architecture with parallel layers that are

connected with FIFOs to form a full accelerator. Because the synthesis phase is time consuming, we

always test our architecture through rtl simulation.

Figure 63 The steps towards the bitfile generation

68

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 64 Block design architecture in Vivado

The final output of this process is the bitfile (and the accompanying .hwh file) that will be downloaded

to the board (Figure 63). To test the accelerator on the board, we put a copy of the dataset and a

premade Python script that validates the accuracy into the driver folder, then make a zip archive of

the whole deployment folder. Finally, we send the zip folder to the board and run the commands

below for testing our accelerator.

unzip deploy-on-pynq.zip -d finn-I2DS-demo

cd finn-I2DS-demo/driver

sudo python3.6 -m pip install bitstring

sudo python3.6 validate_TONIoT.py --batchsize 1000

69

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

Figure 65 Terminal Output

Figure 65 Terminal Outputshows a typical example of the type of results that the execution of the AI

model on hardware, generates. Hence, processing is applied on sets of data that are fed into the AI

processing model in batches. In the figure above, the test data have been split and fed into the model

in ten distinct batches. Subsequently, when the complete set of data has been processed, the process

returns the effectiveness of the particular model given the specific set of data, i.e., accuracy. Note that

the TSI I2DS solution can easily achieve an accuracy of 90%, which can be considered high level.

Finally, Table 2, lists the characteristics and specifications that are particular to the example

demonstrated here. It pertains to the actual hardware resources occupied as well as the latencies that

result from different stages of the process. For instance, fold and pack input relate to the preparation

of the actual data for introduction into the model, whereas the copy_input_data_to_device and

copy_output_data_from_device indicate the cost of moving the data between the CPU and

accelerator memories.

Table 2 Metrcics of I2DS

LUTs 3208

FFs 4643

BRAM 7

DSPs 0

Throughput (im/s) 1177844

cycles 218

runtime (ms) 0.849

fold_input (ms) 0.067

pack_input (ms) 3.040

70

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

copy_input_data (ms) 0.980

unpack_output (ms) 253.8

copy_output_data (ms) 0.261

unfold_output (ms) 0.040

71

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

6. CONCLUSION

In this deliverable, the final research, design, and implementation activities of T2.1 and T2.4 as well as

some implemented components of T2.2 have been presented. This complements the work presented

in D2.1 from M6 to M14 by adding missing aspects that were available at M18 when the WP2 is

concluded. The report of the overall work that has been performed in WP2 tasks 2.1 and 2.4 can be

captured in its wholeness by considering both D2.1 and D2.2 deliverables. This includes the design and

development of the EnerMan intelligent edge node execution environment and its various

components, the design and implementation flow of intelligent operations to be executed in the edge

node (using as proof of concept the energy consumption prediction case), the data harmonization

mechanism and the security related operation on the edge and between the edge and the system

layer.

72

Deliverable No: D2.2 - Final version of EnerMan Data Collection

and Management Components

REFERENCES

[1]. Yeqi Liu, Chuanyang Gong, Ling Yang, Yingyi Chen, DSTP-RNN: A dual-stage two-phase attention-

based recurrent neural network for long-term and multivariate time series prediction, Expert

Systems with Applications, Volume 143, 2020

[2]. J. O. Ramsay and B. W. Silverman, Functional Data Analysis, Springer, 2005.

[3]. J. S. Morris, "Functional regression," Annual Review of Statistics and Its Application, vol. 2, p. 321–

359, 2015.

[4]. Y. Xu, Y. Yang, T. Li, J. Ju and Q. Wang, "Review on cyber vulnerabilities of communication protocols
in industrial control systems," 2017 IEEE Conference on Energy Internet and Energy System
Integration (EI2), 2017, pp. 1-6, doi: 10.1109/EI2.2017.8245509.

[5]. https://github.com/mupq
[6]. DWORKIN, Morris J., et al. SHA-3 standard: Permutation-based hash and extendable-output

functions. 2015.

https://github.com/mupq

73

