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EXECUTIVE SUMMARY   

This deliverable is focused on the final activities of wp2 and especially in the activities of task 2.1 (T2.1) 

and task 2.4 (T2.4). The deliverable presents complementary components and modules as well as 

additions to the overall EnerMan intelligent edge node architecture that aim to fulfil the actions 

prescribed in the DoA mainly for tasks 2.1 and 2.4. After a short introduction, we provide a recap as 

well as updates on the EnerMan intelligent edge node architecture and overall functionality. Then in 

section 3 we describe in detail the activities that have been performed to realize this additional to 

d2.1 functionality and architectural components including any necessary link with the more 

theoretical work on t2.2 and t2.3, the data harmonization mechanism updates and the design and 

implementation flow of hardware assisted intelligence (deep learning and federated learning) 

operations. Section 4 is focused explicitly on the security activities taking place mainly at the edge 

(reporting the activities of t2.4) but also any additions that are made to extend the EnerMan security 

to the overall EnerMan framework. This includes extensions of the security architecture, its 

components, and their functionality. Finally, section 5, describes indicative 

demonstrations/tutorials/hands-on for the various EnerMan intelligent edge node functionalities. 

Since the deliverable is a continuation of D2.1 where the preliminary activities of D2.1, D2.2 (and 

partially D2.3) are reported, we tried not to repeat the same information that appear in D2.1. There 

are several exceptions to this rule for activities that require some background information to become 

available to the reader in order to showcase the additional work that has been done till m18. 
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1. INTRODUCTION 

Work Package 2 of the EnerMan project is focused on the EnerMan framework activities that are 

performed at the edge layer of the Industrial Internet of Things (or the Factory of the Future concept). 

Thus, it is meant to achieve appropriate data collection from the various in-field deployed devices 

within the industrial environment or from dedicated data collection points that are already deployed 

at the industrial site. They concept of edge computing that we are promoting in the EnerMan project 

is also focused on performing as much computation as possible at the edge without the need to 

include the extra delay of transmitting the data to a cloud/system layer. This concept is manifested in 

the WP2 activities through the design and implementation of an EnerMan Intelligent edge node that 

not only collects data but also performs computation/processing on those data as well. The overall 

concept has already been described in D2.1 and includes the necessary computation/execution 

environment that will support the required by the industrial/factory partners, computations 

(additionally supporting any future such computations that may arise) as well as the implementations 

of prescribed software and hardware assisted computations. In D2.1 we focused our analysis on the 

design and implementation of the EnerMan intelligent edge node execution environment, some initial 

intelligent operations related to the execution environment (that are expanded and further refined in 

a dedicated D2.3 deliverable) and the preliminary security architecture.  In this deliverable, we report 

any refinements on the execution environment and the data harmonization mechanism, but we 

mostly focus on the final data collection mechanisms supported by the EnerMan Intelligent Edge node 

as well as the implementation/support of intelligence based (e.g., ML/DL, federated learning) research 

work done mostly in T2.2. Apart from that we also provide the final security architecture and its usage 

for cybersecurity attack prevention and detection (complementing the D2.1 reported work). 
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2. ENERMAN INTELLIGENT END NODES/EDGE ARCHITECTURE 

2.1. Overall Architecture and Usage 

As already described in D2.1 the EnerMan Intelligent Edge node architecture is an heterogenous 

embedded system device that can perform multiple activities within the manufacturing infrastructure 

in an efficient manner. This edge device collects the data that are provided by various sensors existing 

inside the industrial domain, harmonize those data in order to be compatible with the data 

expectations required by the EnerMan big data analytics engine and in parallel also processes those 

data so as to offer the EnerMan platform as well as the operator appropriate information that will 

help them make informed decisions on the optimal energy sustainability options.  

The Data Collection and Processing operation that is performed at the edge using the EnerMan 

intelligent edge node, is efficient, versatile/flexible to the end user needs and easily configurable. As 

described in D2.1 and the EnerMan Description of Action, the EnerMan Edge node is able to collect 

and process the following data: 

▪ Machine energy consumption 

▪ Multiple sensory data (temperature, pressure, humidity, etc.) from existing pilot deployed 

sensors 

The intelligent functionality that the EnerMan edge node can provide is the following: 

• Machine Health status monitoring to detect anomalous, faulty states of a given machine. 

Such states can impact the energy consumption of a given machine and eventually the energy 

sustainability of the overall factory. 

• Local Data energy consumption predictions. We consider important been able to provide to 

the factory operators in-field, local, coarse grain energy consumption predictions to help the 

operator visualize energy consumption trends that can impact locally the production (eg. 

production on a single room or on a single array of machines etc). This mechanism can 

complement the systemwide EnerMan energy consumption prediction mechanism and fine 

tune the prediction results. 

• Data Completion (when missing data appear in a timeseries). Given that in any Industrial 

system there may be loss of single sensor data values within a given timeseries, the EnerMan 

intelligent Edge node data collection mechanism is able to use DL models (based on 

autoencoders) in order to complete missing data values within a timeseries period. This is 

described algorithmically in more details in D2.3 

The EnerMan edge node architecture for Data collection and processing as already described in the 

preliminary version of T2.1 outcomes (the deliverable D2.1) is meant to be used in various ways. Also, 

the node should be able to process data in a fast/efficient manner but also the node should be easily 

adjustable/flexible so as to be readily updated and be adapted in general to various different industrial 

environments. To achieve these goals, we use both hardware (for acceleration purposes) as well as 

software means. 

The final embedded system platform that covers best all aspects of the EnerMan edge node is a 

MultiProcessor System on Chip (MPSoC) embedded system device that can host in its core, multiple 

processors (usually multicore processors) to achieve efficiency but also specialized hardware 

components for specific applications (e.g., Graphic Processing Units (GPU) or real-time processors). To 

further support hardware reconfigurability, our hardware platform choice is embedded system 
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MPSoCs that include in their SoC architecture, reconfigurable hardware programmable logic in the 

form of an FPGA fabric. The latest FPGA manufacturer solutions are perfectly capable of supporting 

the above-described setup. In EnerMan we opt for Xilinx manufacturer devices focusing on the Xilinx 

-AMD Zynq Ultrascale+ MPSoC design as this is realized in two characteristic embedded system boards 

i.e., the Xilinx-AMD ZCU 104 or 102 development board and the Avnet ULTRA96 development board 

that both use the Xilinx-AMD Zynq ULTRASCALE+ ZU9EG MPSoC. 

The overall EnerMan Intelligent Edge node architecture is designed to support the above 

requirements. The architecture has two different views, the sensor data collection view, and the 

control view 

2.1.1. The Sensor architectural view 

This view includes all the necessary architectural components of the EnerMan Intelligent Edge node 

that allow it to act as an edge data collection and pre-processing module of the EnerMan overall 

architecture. Some of these components have been preliminary described in D2.1 but till the end of 

the WP2 (reported in the current deliverable) new components have been added and the existing 

ones have been updated in order to better capture the specification of the EnerMan overall 

architecture. An overview of the EnerMan Intelligent Edge node sensor view can be seen in Figure 1 

 

Figure 1 EnerMan Intelligent Edge node Sensor architectural view 

The EnerMan Intelligent Edge node has three different mechanisms to collect and forward data to the 

rest of the EnerMan architecture and more specifically to the big data analytics EnerMan engine 

(designed and implemented in the context of the WP3 activities). The first approach is direct sensor 

data collection from the various industrial pilot sites. This is practically done by installing a dedicated 

EnerMan data collection agent/daemon on the pilot data collection site. This component is meant to 

constantly monitor the industrial data collection point for new data and when such data are identified 

to forward them to the EnerMan Intelligent Edge node for further processing and analysis. Given the 

various EnerMan pilot use cases and the EnerMan pilots’ feedback provided in WP1 and WP6, the 

sensory data are stored in the industrial sites as csv files that are periodically generated when enough 
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of incoming sensor values are aggregated. The EnerMan daemon detects such newly generated csv 

files and forwards them accordingly to the EnerMan Intelligent Edge node. As expected, when new 

data reach the EnerMan Intelligent Edge node the Data harmonizer is automatically executed so as to 

harmonize the data as needed for the overall EnerMan framework. 

Apart from the above, industrial site driven data collection mechanism, the EnerMan Intelligent Edge 

node is capable of deploying its own end device EnerMan sensor using various different industrial 

communication protocols (e.g MQTT, Backnet, Modbus, IEE802.15.4 etc) in order to collect in-field 

sensor measurements (without relying on the existing industrial sensors or by complementing existing 

industrial sensors). This approach enables more direct data collection compared to the previous 

collection mechanism. 

The third data collection approach that the EnerMan Intelligent Edge node is employs, is based on 

data that are generated within the node itself after some pre-processing from the first of second data 

collection approach. While these are not raw data (but rather metadata or features) they are still 

forwarded to the EnerMan system and more specifically to the big data analytics engine. These 

metadata are mainly the outcome of the EnerMan Intelligent Edge node supported intelligence and 

can be sensor data predictions (e.g., energy consumption predictions) as well as anomalous machine 

behaviour that can be attributed to machine faulty states (evaluation of machine health status). 

Note that from a research perspective, we are capable of supporting intelligent processing (ML and/or 

DL based) that can follow the Federated Learning paradigm. This approach assumes that we can 

deploy within the Industrial environment several EnerMan Intelligent Edge nodes that collect data and 

monitor a subset of the overall factory machines (eg, machines within a given room or of a given 

industrial process). Such nodes are acting as clients that collect similar data but due to the limited 

dataset size cannot achieve individually significant inference (classification/prediction/imputance) 

accuracy. Using the Federated Learning paradigm, we are able to aggregate the various clients (i.e., 

individual EnerMan Intelligent Edge nodes) ML/DL models in order to create a global federated 

supermodel (with increased accuracy) that can be then forwarded back to the clients so as to help 

them make more accurate inferred results. While the Federated Learning algorithmic work is 

described in D2.3, in D2.2 (i.e., the current deliverable) we provide the practical backbone that allows 

the algorithms to work in a close to real environment (assuming an IP network communication 

infrastructure). An overall view of the three above described paths can be seen in the following figure 

(Figure 2) 

 

Figure 2 EnerMan Intelligent Edge node Data collection and pre-processing paths 
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It should be noted that since the EnerMan framework may not necessarily reside as a whole in the 

Industrial site premises (it may be offered as private or public cloud-based service), there a significant 

risk of cybersecurity attacks on the data to be sent or received as well as on the Industrial 

infrastructure that is associated with the EnerMan platform as a whole. Thus, all data transmissions 

to or from the EnerMan Intelligent Edge node are secured while the overall system is designed to 

prevent cybersecurity attacks as well as detect such attacks when they are initiated. 

2.1.2. The Control architectural view 

This view of the EnerMan Intelligent Edge node is exploring the control/configuration capabilities of 

the node itself. Given the task and DoA description regarding control on the EnerMan Intelligent Edge 

node, we can split this control type into two different paths. The first path has to do with the control 

of the EnerMan Intelligent Edge node itself while the second path has to do with the capability of the 

EnerMan Intelligent Edge node to propagate industrial device configuration decisions that stem from 

informed choices made by the industrial personnel (with the assistance of the EnerMan i-DSS 

subsystem). Thus, in the first adopted path the control target is the EnerMan Intelligent Edge node 

while in the second adopted path the control target is some industrial subsystem (or machine). The 

overall control architectural view can be seen in Figure 3  

 

Figure 3 EnerMan Intelligent Edge node Control architectural view 

As seen in Figure 3, there are several ways that can be used to adjust the configuration of the EnerMan 

intelligent Edge node. Algorithmically, the intelligence of the node can be controlled using the 

Federated Learning paradigm when the client ML/DL models are updated/enhanced from the Global 

Federated Model (that takes into account all local client models to achieve high accuracy). More 

information on this concept can be found in D2.3. Apart from that, the Data Harmonization process is 

customized according to the Industrial factory (eg. any EnerMan pilot) at hand, thus appropriate 

configuration files can be provided to the Data harmonization mechanism in order to set it up for a 

given industrial domain and factory. Finally, it should be taken into account that the EnerMan 

intelligent Edge node device is a heterogenous MPSoC with multiple processing capabilities in the form 

of CPU, GPU as well as FPGA fabric. This allows for a fundamental reconfiguration that can be extended 
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to software and hardware IP cores. This latest approach has been discussed in D2.1 where the 

EnerMan Intelligent Edge node execution environment is detailed. 

Given these three ways of configuration control over the EnerMan Intelligent Edge node, we have 

designed and implemented a mechanism (extended the existing execution environment of the 

EnerMan Intelligent Edge node) that can support this reconfiguration in a remote way. This is in line 

with the overall EnerMan concept, where configurations are provided by the EnerMan system to the 

edge nodes and then they are propagated (if needed) to the industrial actuators/controllers (if those 

are available). The mechanism is further described in section 3 of this deliverable. 

Regarding the EnerMan Intelligent Edge node control configurability, it shouldn’t be omitted its 

capability to collect through the remote configuration mechanism user chosen configurations (Global 

control processes/configurations) using the EnerMan i-DSS component that are communicated to the 

Industrial control/actuation. This procedure is supported by the EnerMan Intelligent Edge node as 

mentioned above but it is also enhanced with local control configurations (that are further described 

in D2.4). However, in practice due to the sensitive nature of Industrial operations within the EnerMan 

pilot sites, it would be extremely difficult to actually deploy such configurations in the pilot sites. Thus, 

we envision to showcase this kind of configuration deployment either as dedicated control guidelines 

to the factory in-field workers or as configurations to be realized in a virtual factory. 

2.2. Edge/End Node Execution Environment 

In Deliverable D2.1 we have provided detailed description and usage of the EnerMan intelligent edge 

node execution Environment that also included demonstration of its creation using the Xilinx tools as 

well as demonstration of its usage. Although the Execution Environment has practically been already 

finalized by M14 of the project (as reported in D2.1), we have nevertheless provided some additions 

to its overall structure so as to increase its simplicity and usability. More specifically, we have migrated 

all firmware and OS functionality from the original Petalinux environment (supported through 

dedicated tools by Xilinx-AMD) to a more open Debian distribution that can simplify the introduction 

of new OS and application components. The new version of the execution environment is fully 

compatible with the original one and in practice we can use both approaches.  The updated version of 

the execution environment can be seen in Figure 4 

 

Figure 4 Updated EnerMan Intelligent Edge Node Execution Environment 
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As can be seen from the above figure, a new module has been added in the environment, denoted as 

Node reconfiguration client, that is meant to support the configuration control view of the EnerMan 

Intelligent Edge node. The functionality and usage of such a module (along its interaction with a 

necessary reconfiguration server i.e., the remote configuration orchestrator) is described in more 

details in subsection 3.5 

Apart from the above, as it has briefly already been described, the final Edge node Execution 

Environment does not necessary rely on the Petalinux distribution (that has several usability 

drawbacks) but is rather built on top of the generic Xilinx Linux kernel. This allows the usage of other 

Linux distributions like the Debian distribution that is currently used on the EnerMan Intelligent Edge 

node device (using the Avnet ULTRA96 board or the similar Xilinx ZCU104 board). 

2.3. Interaction with the EnerMan framework - Communication Interfaces 

The EnerMan intelligent edge node interaction with the rest of the EnerMan framework is mainly 

made with the actual industrial pilots sites (where data are generated) and the Big Data Analytics 

engine, BDAE, (designed in T3.1) that acts as the prime data collector and consumer, as can be seen 

in Figure 5. Pilots provide the main input to the EnerMan framework and interact with the Intelligent 

Edge Node, identified as  step 1 in Figure 5, by providing generated data, either by having sensors 

providing direct info, or by providing their own files, either by copying them into one specific folder to 

be captured by a folder daemon, or by uploading it on a Web Server on the node. This interface is 

discussed in detail in Section 3.2. As also described in section 2.1, data can be collected using the 

EnerMan Intelligent Edge node end devices (sensors) that use their own communication protocol 

related interface. 

The Intelligent Edge Node takes the raw data input, runs it through an initial harmonization process in 

order to process this raw data and turn it into a unified and standardized data representation. To 

perform the harmonization, the module uses an HTTP GET request to read JSON Data Model files from 

the BDAE API and an HTTP POST request to modify their content. These Data Models contain metadata 

information, dedicated to each pilot’s data characteristics. Finally, the harmonized data in csv format 

are securely transferred to the BDAE server using the SSH File Transfer Protocol, identified as step 2 

in Figure 5. This interface is discussed in more details in Section 3.2.  

 

Figure 5 Intelligent Edge Node interactions 

Note, that in the presence of security measures, the above interactions can be altered so as to fully 

support the EnerMan security capabilities. More specifically, while the original data transmission 

between the pilot site and the EnerMan Intelligent Edge node is performed using the TCP protocol, 

using the EnerMan security realized capabilities, the transmission is upgraded to quantum safe TLS 1.3 

employed a dedicated Hardware Security Token that is integrated inside the EnerMan Intelligent Edge 

node. 
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3. EDGE NODE DATA COLLECTION, DATA PROCESSING DESIGN AND 

COMPONENT IMPLEMENTATION 

3.1. Sensor based Data collection mechanism 

The Edge data collection has been based around the core reconfigurable platform of AvNet Ultra96v2 

(Figure 6) that defines a potable, multi-protocol, multi-function data aggregator and edge processing 

facility.   

 

Figure 6 Ultra96v2 platform 

The initial Petalinux environment and OS kernel have been upgraded to a customized porting of the 

Bullseye Debian distribution (Debian 11), over which, a number of data acquisition protocols and 

mechanisms are supported. Initially, based on the various indicative project use cases, it supports a 

core set of industrial standards, such as Modbus, KNX and BACNet, as well as high-end, industrial 

grade, high-frequency IEPE vibration sensors and relative acquisition interface boards. Besides these, 

modern IIoT protocols like MQTT and CoAP, are supported as well, over wired, or wireless media, 

including Bluetooth/BLE, IEEE 802.11b/g/n, IEEE 802.15.4 TSCH or CSMA, in 2.4GHz or long-range, sub-

GHz bands (IEEE 802.15.4g). In this way, it can directly communicate with many available standard 

COTS sensor or actuator devices, but also with modern, low power, multi-sensor IoT components 

(Figure 7).  

 

Figure 7 Heterogeneous sensors supported 
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The block diagram of the main edge node, data collection mechanism is presented in Figure 8. The 

downstream communication to field devices can be done through all feasible combinations of protocol 

components and physical medium interfaces, according to the particular use case and the field device 

specification. The edge node can also retrieve real-time data streams, if needed, from upstream links, 

using typical industrial protocols over TCP/IP (Ethernet or WiFi).     

 

Figure 8 Edge data collection block diagram 

The management, collection setup and routing of data towards the Data Processing subsystems is 

implemented by the Data Stream Manager and Data File Manager components, while the sensor data 

streams can be also accessible directly through a monitoring web interface implemented on board by 

the Data Stream Manager (Figure 9).  
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 Figure 9 On-board sensor data stream monitors 

In addition, in order to support different data collection practices e.g., in cases that security, privacy 

and confidentiality policies do not allow for direct acquisition of sensor data streams, data can be also 

collected and stored in text or excel files in regular periods and in chunks. This file collection can be 

done by uploading data to a specific folder location and collecting them through some folder daemon 

mechanism that checks whether new files have been inserted, or through a web interface, that 

subsequently sends the uploaded file to the appropriate next step in the EnerMan process. 

Towards that end goal, two basic Python programs have been developed that are able to run in the 

EnerMan Intelligent Edge node. The first program is a folder daemon that has a constant network 

connection with the EnerMan Intelligent Edge node and is deployed in the data repository of any 

industrial manufacturing system. The daemon continuously monitors a specific folder for new files. 

Once a new file has been copied into the folder the daemon will detect it and will send it over the TCP 

connection to EnerMan Intelligent Edge node. The second program is a rudimentary web portal, based 

on python’s Flask web server, where pilots can upload their files. Once these files are uploaded, they 

are sent via the same mechanism as the folder daemon to the EnerMan Intelligent Edge node data 

harmonization mechanism. 
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Figure 10 Rudimentary web server for collecting datasets 

To correctly transport any number of files present into the directory or submitted by the dataset 

producer, we designed a very simple application protocol, using TCP as transport protocol (which as 

part of T2.4 is upgraded to a highly secure TLS1.3 communication flow), as shown in Figure 11. The 

client will send the number of files along with the total length of the segment and then iteratively for 

each of newly discovered files will send the file number along with its filename’s length, the filename, 

the file’s length, and finally the file. The server, on the other end, supports connection from multiple 

clients, and will forward the received data to the next step in the EnerMan process. 

 

Figure 11 Simple protocol for sending dataset files 
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3.2. Data Harmonization  

Data harmonization workflows aim to process the raw data collected at the edge nodes and turn them 

into a unified and standardized data representation. This is the first layer of pre-processing, taking 

place at the edge nodes, so that the various data sets follow a standardized form when they are 

ingested in the cloud, where the second layer of pre-processing will be applied. Data harmonization is 

an important stage in a data preparation pipeline since the raw data are produced in custom formats 

which are diverse and pose a challenge for the application of advanced pre-processing techniques. For 

example, raw provided datasets can have varying file formats (e.g., .csv, .xlsx, .eps) and missing values 

indications (e.g.,  N/A, #NA, -1.#IND, -NaN, -nan , N/A, NA, NULL, NaN, n/a, nan, null), non-standard 

headers (e.g., multirow, with spaces, too long), duplicates, localized indications for decimal and 

thousands, heterogeneous timestamp formats and time zones, empty rows or columns. These are all 

issues that need to be addressed at the collection edge nodes, so that cloud processing functions can 

be applied uniformly.  

The Data Harmonization module (initially presented in D2.1 Preliminary version of EnerMan Data 

Collection and Management Components, M12) handles all the above-mentioned data harmonization 

requirements. Figure 12 depicts the harmonization module deployed in the data aggregator of the 

EnerMan intelligent nodes and how it communicates with the Big Data Analytics Engine (BDAE) cloud 

server (more details on the BDAE architecture can be found in D3.1 Big Data Collection and Analytics 

Platform and Analytics Report, M18). The module uses a GET request to read the JSON Data Model 

files from the BDAE API and a POST request to modify their content whenever the schema of the raw 

data changes. These Data Models contain metadata information, dedicated to each pilot’s data 

characteristics, to guide the harmonization processing. After the harmonization is complete, the 

harmonized data in CSV format are securely transferred to the BDAE server using the SSH File Transfer 

Protocol, which ensures data integrity via encryption and cryptographic hash functions, while it 

authenticates both the client and the server. 

 

 

Figure 12 Data harmonization workflow between the edge and the cloud 

 

The harmonization module is written in Python and is comprised of the following components: a 

DataLoader class to load the raw batch data, a BaseHarmonizer which serves as an abstract class to 

enforce the implementation of the required harmonization methods in the child harmonizer classes. 

A dedicated harmonizer class is built for each organization as presented in Figure 13, e.g., 

CRFHarmonizer, YIOTISHarmonizer, 3DNTHarmonizer, STOMANAHarmonizer. This separation was 
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necessary because of the heterogeneous data representations of the different pilot organizations. The 

harmonizers share a lot of common fields and methods, but they also employ different approaches to 

implement them behind the scenes. Following a one size fits all approach, was rejected because it 

would lead to a heavy weight monolithic class, difficult to maintain. Essentially, the motivation was to 

have some extra modularity and repetition in the edge implementation, but to completely avoid it in 

the cloud processing.  

 

Figure 13 UML diagram of the EnerMan harmonization module 

 

The final component of the module is a library with harmonization functions and quality checks 

operations which is available to all harmonizers:  

NAME 
    src.utils.harmonization_utils - # -*- coding: utf-8 -*- 
FUNCTIONS 
    clean_column_names(data, new_features) 
        Clean column names and returns a list of the standardized column names. 
     
    clean_dups_nan(data, missing_indication) 
        Drop duplicates and empty rows. 
     
    concat_date_time_columns(data) 
        Concat date and time column in a single column. 
     
    drop_unnamed_empty_columns(data) 
        If dataframe has unnamed empty columns drop them. 
        
    fix_column_names_nonum(data) 
        If a column name doesn't contain its corresponding number, add it. 
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    get_new_features_dict(new_feature_structure, new_features, std_column_names) 
        Creates a dict of new features dicts and standardized names. 
     
    local_to_utc(tz_info, df) 
        Convert local timezone datetime columns to UTC. 
     
    merge_new_features(features, new_features_dicts) 
        Merge the existing features' dictionary with the new features. 
     
    optimize(df, datetime_features) 
        Optimize floats, ints and objects. 
     
    replace_with_booleans(data, contains_boolean) 
        If dataset contains boolean column replace ON OFF with 1 0. 
     
    resampling_dups(resample, data) 
        Handle duplicate timestamps (keep first, last, avg, or median. 
     
    standardize_cols(data, features_dict) 
        Set standardized feature names and dtypes. 
     
    to_utc_aware(df) 
        Make UTC-aware datetime columns. 
     
    utc_to_local(tz_info, df) 
        Convert UTC timezone columns to local timezone. 
     
    update_org_data_model(org_name, post_data_model_url, org_data_model) 
        Write the updated organization's data model to <ORG>.json file. 
 

 

3.3. Data post processing –Energy Consumption prediction 

The problem of energy consumption prediction is rising nowadays as a crucial one due to the high 

impact on various operations at buildings or whole factories. Acquiring information for possible high 

energy consumption in the near future, could assist the administrators to take the appropriate 

countermeasures in order to adapt the building/factory operations. Moreover, a possible outlier could 

cause future damage in the factory machines thus it needs to be detected in time. In EnerMan, we 

address this problem at the various layer of the EnerMan architecture. At the Edge layer, in the 

EnerMan Intelligent edge node, we introduce a local energy consumption prediction mechanism that 

relies on Deep Learning techniques and does not need a fine-grained energy consumption model for 

each Industrial environment machine. In subsection 3.3 we provide all necessary design details on our 

approach while in subsection 3.4 we showcase how the generated DL models can and have been 

implemented using hardware acceleration.  

3.3.1. Dataset 

An enormous problem that is inherent in neural networks is the selection of the appropriate dataset 

which could boost the model’s accuracy significantly. A dataset with poor quality (high noise, few 

features, small number of entries etc.) could never reach high levels of accuracy.  We have chosen an 

open-source dataset from the relevant research literature [1] This choice was made in order to 

compare our models with some published results. We plan to use the same methodology described 

in this subsection to the EnerMan pilot datasets that fit the dataset requirements. The used datasets 

may be a little different from those that pilots could provide but the workflow is similar and the 

incorporation of them is a straight forward process.  

The dataset is referred to a building near to the Chievres Airport, Belgium and consisted of 19735 

samples and 28 features. Every sample in this timeseries dataset is recorded per 10 minutes and the 

features are analytically explained below 
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1. Appliances, energy use in Wh 

2. Lights, energy use of light fixtures in the house in Wh 

3. T1, Temperature in kitchen area, in Celsius 

4. RH_1, Humidity in kitchen area, in % 

5. T2, Temperature in living room area, in Celsius 

6. RH_2, Humidity in living room area, in % 

7. T3, Temperature in laundry room area 

8. RH_3, Humidity in laundry room area, in % 

9. T4, Temperature in office room, in Celsius 

10. RH_4, Humidity in office room, in % 

11. T5, Temperature in bathroom, in Celsius 

12. RH_5, Humidity in bathroom, in % 

13. T6, Temperature outside the building (north side), in Celsius 

14. RH_6, Humidity outside the building (north side), in % 

15. T7, Temperature in ironing room , in Celsius 

16. RH_7, Humidity in ironing room, in % 

17. T8, Temperature in teenager room 2, in Celsius 

18. RH_8, Humidity in teenager room 2, in % 

19. T9, Temperature in parents room, in Celsius 

20. RH_9, Humidity in parents room, in % 

21. To, Temperature outside (from Chievres weather station), in Celsius 

22. Pressure (from Chievres weather station), in mm Hg 

23. RH_out, Humidity outside (from Chievres weather station), in % 

24. Wind speed (from Chievres weather station), in m/s 

25. Visibility (from Chievres weather station), in km 

26. Tdewpoint (from Chievres weather station), Â°C 

27. rv1, Random variable 1, nondimensional 

28. rv2, Random variable 2, nondimensional 

The five first samples are illustrated in Figure 14. Appliance and lights are in Wh while temperatures 

are in Celsius and relative humidity is given as a percentage value.  

 

Figure 14 Five first samples of the dataset 

The first and second feature are the appliances and lights energy consumption in Wh. Then, features 

3 to 20 show the temperature and humidity of all rooms of the building. Next, feature 21 to 26 are 

metrics given from Chievres weather station (air temperature, humidity etc.). Lastly, two random 

variables are induced to the dataset from the constructor. This work is focused to predict the 

appliances energy consumption in the short-term future combining knowledge from previous 

samples. In the table below various information about the five first features are depicted 
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Figure 15 Various feature information 

3.3.2. Problem formulation and preprocessing 

The most critical aspect of creating an appropriate and accurate DL solution is the problem 

formulation because different approaches lead to huge variations in metric accuracy. The main 

restriction at this stage is based on the hardware resources that could support such Neural Network 

models. This affects the sequence length (how many samples) are fed to the model. Since every 

sample is per 10 minutes, sequence length was chosen to be set at 12 (observing 2 hours before from 

the current time), so SequenceLength = 12. The value that must be predicted is in the appliances 

column after targ (target) timesteps. In order to predictthe values after 1 hour from the current 

timestep, targ was set to 6.  

An additional important parameter is the sampling rate (or step) that must be chosen wisely. The 

dataset length (total timesteps or samples) could be characterized as small and there is no other 

choice from setting the sampling rate equal to 1. So, every timestep is being utilized to train, validate 

and test the Neural Networks models. The targ could set accordingly in the desirable time slot that 

the designers want to predict, i.e., targ = 12 for prediction after 2 hours, targ = 30 for prediction after 

5 hours and so on. Likewise, the SequenceLength could be set accordingly, but through a large number 

of experiments, optimal value was found at 12.  

The preprocessing state is quite crucial for the model accuracy. In this work none of the features were 

omitted. Thus, each feature was utilized in the experiments. A different approach could be to drop 

some of them like rv1 and rv2 in order to reduce the problem complexity, but it was found through 

testing that there is, at some point, a kind of correlation between them. Another decision that needs 

to be made is how to split the dataset in training set, validation set and testing set. The traditional 

approach suggests 60%, 20%, and 20% respectively for train, validation and test sets. It was found that 

a better option for this particular dataset is to be split as 55%, 25% and 20%. So far, the preprocessing 

parameters have been set as follows: 

• SequenceLength = 12 

• Targ = 6 

• SamplingRate = 1 

• Num_training_set = 10854 

• Num_validation_set = 4933 

• Num_test_set = 3948 

 

The last option that must be set is if whether to adopt either the standardization or the 

normalization technique. Studying the international bibliography for analogous problems, the data 
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standardization is promoted as the proper one. For each feature of the dataset, the mean value is 

calculated based only on training set. Then, is subtracted from the total dataset. Thereafter, the std 

value of each feature from the new dataset is calculated based again only on training set and divided 

to the whole dataset. In that way, each feature gets a mean value around zero and a std close to one. 

These calculations are depicted below as python code where float_data is the NumPy array containing 

the original dataset. At this point, it is important to note that, the mean and the std values are 

calculated based only on the training data set. No data should be extracted from the validation or test 

dataset and induced to the model. 

 

 

Figure 16 Data standardization 

 

3.3.3. Designed and Developed Neural Networks models 

The Python neural networks models that were adopted for this work can be divided into two different 

categories. First, an artificial neural network (ANN) was employed in order to obtain some baseline 

metrics such as Mean Absolute Error (MAE). Various forms and structures were tested thoroughly 

during the model tuning phase. The final one is constituted of 3 dense layers of 16 nodes each. The 

detailed architecture is shown in Figure 17 below 
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Figure 17 ANN structure 

As it was analytically declared in the problem formulation, a matrix 12x28 is fed to the model at input 

layer. Then, a Flatten layer is applied to transform the input matrix to a vector of 336 elements. Next, 

a dense layer of 16 nodes is inserted sequentially. Thereafter, a dropout layer is applied in order to 

prevent overfitting. After various experiments, best values over multiple experiment (optimal) for the 

dropout layers found to be at 40% and the number of nodes were set to 16. A 40% dropout means 

that 30% of extracted weights will be set to 0. Also, adding more nodes has no significant impact to 

the model performance. The activation function that was employed is the ReLU one (Figure 18). ReLU 

sets to zero inputs less than zero and makes no modification to those greater than 0. This sequence 

of layers (dense layer of 16 nodes followed by a dropout layer of 30%) was repeated two more times 

until the model reaches a final single node with no activation function to get the predicted value.  

 

Figure 18 ReLU activation function 
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An important aspect of the design process is the utilization of a reasonable number of parameters to 

be implemented in an FPGA. As it is depicted on Figure 19, the total number of parameters is 5,953. 

The first dense layer is the most computationally intensive as it produces 5,392 parameters. Then, the 

second (dense_1) and third (dense_2) dense layers add 272 parameters each. Lastly, the last layer 

(dense_3, single layer node) adds only the final 17 parameters. The number of parameters of a layer 

is calculated by multiplying the current layer nodes with previous layer nodes plus one. Thus, 

layer_params = layer_nodes*(prev_layer_nodes + 1). 

 

 

Figure 19 Number of parameters per layer 

The work in [1] that is compared to the one presented in this deliverable, has found that MAE equals 

to 0.45 using GRU (Gated Recurrent Unit) units while the MAE equals to 0.40 based on LSTM (Long 

Short Term Memory) units. Neither of those units could be adopted for our work at the current phase 

due to designing tools restrictions of the HLS4ML toolbox. LSTM or GRU cells could detect in an 

enhanced way the temporal dependencies from a timeseries dataset. So, the purpose is to find 

solutions amenable to hardware implementation/acceleration such as ones based on ANN (artificial 

neural network) and CNN (convolution neural network) in order to achieve results as close as possible 

to LSTM/GRU ones.    
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Figure 20 Training and Validation Process 

The training and validation processes are illustrated in Figure 20 through 200 epochs. The test MAE 

was found to be 0.45. This is a not a great result overall but can easily outperform the GRU solution 

due to its simpler architectural complexity. Compared to LSTM solution, our approach lags in accuracy 

but if a tradeoff needs to be made, this work preferable due to the fact that it is faster and consume 

far less resources compared to the LSTM design. Figure 21 shows the predicted values in comparison 

with the original ones for every sample of the test set. 

 

Figure 21 Predicted vs Ground truth samples of test set 

The predicted values are illustrated with red dots while the ground truth data are depicted with blue 

dots respectively. It is obvious that the implemented ANN model is focused on predicting values 

around zero. Data points that diverge significantly from zero, are mainly responsible for the MAE final 

performance. Maybe a different normalization technique should be adopted, like min-max 

normalization but in a great number of prediction problems, the standard normalization, s preferred. 

Regarding the ANN model, it exhibits analogous performance with the GRU one while at the same 

time has quite simpler architecture. 
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The second approach that was employed for this work in order to exploit all the feasible neural 

network solutions is based on a CNN (convolution neural network) architecture. This model is actually, 

a combination of a CNN and ANN in the sense that on top of a CNN an ANN is connected. The model’s 

architecture is illustrated in detail in Figure 22. The input Is a 2d tensor (12x28, SequnenceLength x 

number_of_features) that is fed into a convolution layer of one dimension (Conv1D). This layer was 

set to produce 32 different kernels (filters = 32) and kernel size was tuned to 1 (kernel_size = 3). Various 

values were tested to tune the filter and kernel size for optimal results. The filter and kernel sizes that 

were utilized were [32, 64, 128] and [3, 5, 7, 9] respectively. There was no improvement though in the 

test MAE.  

 

Figure 22 CNN structure 

The performance that has been achieved for this architecture is 0.44 of test MAE. There was a slight 

enhancement compared to the ANN solution, but the CNN model is much more computationally 

intensive than the previous one. The shape of the Conv1D is (None, 10, 32). The first dimension (None) 

corresponds to the batch size and is configured to 64 (batch_size = 64) at runtime.  
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Figure 23 Tanh(x) activation function 

The second dimension is 10 and is calculated as follows. Let S be the second dimension of the output 

convolution layer, then S = SequenceLength –  kerne_size + 1, based on the fact that padding and stride 

parameters were set as ‘valid’ and 1 respectively. As it was previous declared the value of the third 

dimension is determined by the desired number of  the filters layer. The convolution layer is followed 

by a single dimension MaxPooling Layer of size 2. The operation of this filter is quite simple. For each 

of the extracted filters, every two elements are compared and the bigger one is chosen. An example 

of this process is shown in Figure 24 as follows 

 

 

Figure 24 MaxPooling Layer operation 

This structure of a convolution (Conv1D) layer followed by a pooling layer (MaxPoolingLayer1D) was 

utilized repeatedly 2 and 3 times (Conv1D + MaxPooling1D + Conv1 +…) but none of the repetitions 

worked effectively (based on the performance metric). It is important to note that the activation 

function of the Conv1D is ReLU Consequently a Flatten layer was used to convert the input 1D tensor 

(matrix) 5 x 32, into a 1D tensor (vector) of 160 elements. Then, the ANN architecture from the 

previous design was employed and placed on top of CNN model. The only difference of this ANN model 

compared to the previous one, is the utilization of the tanh activation function.  

Since the remaining architecture of the CNN model is based on the previously presented ANN 

approach (3 dense layers of 16 nodes combined with dropout layers of 40%), no further explanation 

needs to be given. The sum of all the given parameters is equal to 5,847 total parameters. The number 

of parameters of each dense layer is calculated as, dense_layer_params = 

layer_nodes*(prev_layer_nodes + 1). On the other hand, the parameters of the convolution layer is 

computed as, conv_params = kernel_size * num_features * filters_size + filters_size. Thus, the total 

number of parameters in the convolution layer are equal to 2,720 elements.  
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Figure 25 Training and Validation Process 

 

Figure 26 Predicted vs Ground truth samples of test set 

The training and the validation process are illustrated in Figure 25 for each epoch, 0 until 200 of them. 

The test MAE (Mean Absolute Value) is equal 0,44. There is a minor improvement here in terms of 

performance, but the first approach (ANN) is selected due to its inherit simpler design complexity. As 

it could be seen, the validation metric converges in a more efficient way than the training one. Figure 

26 depicts the predicted versus the ground truth samples for each of the training samples. Red dots 

(predicted values) vary from minus one to plus one mainly, which means that the model cannot predict 

values that diverge significantly from that region. 

Finally, it is important to summarize all the parameters settings that were adopted to tune our models 

to get optimal results  

• Sequence Length = 12 

• Target = 6 
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• Sampling rate = 1 

• Batch size = 64, 

• Optimizer = Adam,  

• learning rate = 10e-5, 

• Loss function = MSE (Mean Square Error), 

• Accuracy = MAE (Mean Absolute Error), 

• Epochs = 200 

3.3.4. Other approaches 

Energy consumption prediction is often focused on forecasting daily consumption profiles through 

regression and time series models. In the Industry 4.0 framework, the experimental measurements 

for the energy consumption are in fact characterized by high dimensional formats that can be well 

represented as functional data or profiles for each day [2]. To predict energy consumption profiles, 

the generalization of the multivariate regression analysis to case where the covariates and/or the 

response have a functional form, can be made (it is referred to as functional regression [3]). Functional 

egression models allow for the prediction of the energy consumption of the next day based on the 

information available up to the current instant and covariates. The main advantage of these models is 

their suitability for dealing with high-dimensional data observed on possibly uneven, non equidistant 

time points, with noise. The application of these models in the EnerMan project will be shown in D4.1, 

Section 5.3 (Integrated approach for system description and statistical-deterministic analysis). 

3.4. Intelligence Acceleration using Hardware assistance 

The main purpose to implement an algorithm in hardware is either to accelerate its performance or 

for portability reasons. A hardware implementation can be placed on edge and run it independently 

from other applications.  It is important that there is no need to dedicate either a GPU or CPU for that 

application, although, the main reason is to achieve optimal performance in terms of speed. The 

process that was followed to obtain hardware implementations is based on an open-source 

framework called hls4ml. In this subsection we describe analytically the hls4ml framework, all of its 

capabilities and the whole workflow process that has been employed in order to obtain the RTL 

(register transfer level) design of the subsection 3.3 selected DL model. 

3.4.1. The open-source framework hls4ml 

hls4ml is a Python package for implementation of machine learning inference in FPGAs. It creates 

firmware implementations of machine learning algorithms using high level synthesis language (C++) 

with the backend based on Vivado-HLS. It translates traditional open-source machine learning package 

models into HLS compatible code format that can be configured accordingly, depending on the case. 

A list of supported ML codes and architectures, including a summary table is below. Dependences are 

given in the Setup page. hls4ml supports Keras, Tensorflow, QKeras, PyTorch and Onnx libraries. For 

this work, Keras package was employed. The neural network architectures that the framework 

supports are convolution based, either 1D or 2D, and fully connected networks (ANN, multi-layer 

perceptron).      

The workflow procedure is straight forward and could be described as follows. First, a yaml file (.yml) 

needs to be created containing the configuration of all the necessary parameters. YAML file is a data 

serialization language that is used for writing configuration files for various programming languages. 

Figure 3.6.1 shows a basic example of yml configuration. The only files that need to be provided into 

yml file are, first the python trained model as a json file and second, the extracted weights as h5 file. 

Keras or h5 are two different types of files that Keras package can store the model weights.    
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Figure 27 yml file example 

In the above figure, a basic example is illustrated. There are several configuration options that must 

be declared and are analytically described below:  

• KerasJson/KerasH5: for Keras, the model architecture and weights are stored in a json 

and h5 file. There is support for keras model’s file obtained by model.save() Python 

command. In this case, the h5 file is supplied in KerasH5: field. 

• InputData/OutputPredictions: path to the input/predictions of the model. If none is 

supplied, then hls4ml will create artificial data for simulation. Numpy data files are 

supported.  

• OutputDir: the output directory where the HLS project appears 

• ProjectName: the name of the HLS project IP that is produced 

• Device: the FPGA part number targeted, here it’s a Xilinx Virtex-7 FPGA 

• ClockPeriod: the clock period, in ns, at which the algorithm runs 

• IOType: options are io_parallel or io_stream defines if the algorithm uses pipeline 

technique or not 

• ReuseFactor: in the case that pipeline is used, this defines the pipeline interval or 

initiation interval 

• Strategy: Optimization strategy on FPGA, either “Latency” or “Resource”. If none is 

supplied, then hl4ml uses “Latency” as default. Note that a reuse factor higher than 1 

should be specified when using “resource” strategy.  

• Precision: this defines the fixed-point precision of the inputs, outputs, weights and 

biases. It is denoted by ap_fixed<X,Y>, where Y is the number of bits representing, the 

integer part, and X is the total number of bits. Additionally, integers in fixed precision 

data type (ap_int<N>, where N is a bit-size from 1 to 1024) can also be used.  

At HLSConfig field, the general configuration of the model is described. But there is an option to 

further configure it in a more fine manner employing a per-layer configuration. As it is shown, the 

dense layers have a different setup when using resource Strategy where ReuseFactor equals 2, while 

the remaining model utilizes a pipeline approach. 

The yml file that has been created for our ANN architecture described in section 3.6 is depicted 

in Figure 28. The clock period has been set to 5ns and IOType was selected for the io_stream (no 

pipeline) and the strategy was configured as Resource in order to minimize the resource utilization of 
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the FPGA device. A ReuseFactor equal to 4 was selected meaning that for every X concurrent 

operations, x/4 modules (i.e. DSPs) are employed. Finally, the precision that was chose is equal to 14 

bits total, with 6 MSBs representing the signed integer part.    

 

Figure 28 ANN configuration yml file 

Thereafter, using command line interface (CLI) and yml file, the HLS project is created. Then, the 

project needs to be built using the hls4ml build command. Although, there are many options which 

may be enabled during the built process, the –all one (means that all steps are to be done) was chosen 

for the ANN and CNN architecture. A detailed list of them that the designers can enable/disable are 

presented below 

• -c, --csimulation: run C simulation. 

• -s, --synthesis: run C/RTL synthesis 

• -r, --co-simulation: run C/RTL co-simulation. 

• -v, --validation: run C/RTL validation. 

• -e, --export: export IP (implies -s) 

• -l, --vivado_synthesis: run Vivado synthesis (implies -s). 

• -a, --all: run C simulation, C/RTL synthesis, C/RTL co-simulation and Vivado synthesis. 

• --reset: remove any previous builds 

The ANN architecture design project has been successfully built. The desired clock period of 5ns have 

been achieved and RTL implementation can operate at 200MHz frequency. The Latency of the design 

is 104 cycles. Given that the design runs at 200MHz, this leads to an impressive time delay of only 520 

nsec.  

 

Figure 29 Latency of ANN design 

The resources that are utilized to implement the ANN design are shown in Figure 30 analytically. In 

this context, an explanation of the available resources of an FPGA is briefly given. Look-Up-Tables 
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(LUTs), can perform arbitrary logic functions on small bit width of 2-6 inputs. These can be used for 

Boolean and arithmetic operations as well as for memory purposes.   

 

Figure 30 Resource utilization of ANN design 

Flip-Flops registers on the other hand can store data in sync with the clock pulse. The most desirable 

FPGA components for Neural Networks architectures are Digital Signal Processors (DSPs). DSPs are 

specialized units for arithmetic operations like multiplications and additions. They are faster and more 

efficient than using LUTs for these types of operations. BRAMs are small, fast memories - RAMs, ROMs, 

FIFOs (18Kb each in Xilinx). Memories that are created using BRAMs are more efficient than using 

LUTs.  An FPGA like Virtex-7 has nearly 100Mb of BRAMs.      

 

Figure 31 Configuration yml file of CNN design 

The implemented RTL design employs 573 BRAM of 18K, 1476 DSP units, 85,519 Flip Flops and 55,879 

LUTs. In terms of FPGA available resources, the design occupies 19%, 41%, 10% and 12% of the 

aforementioned resource types respectively.  It is obvious that the high utilization of DSPs units is the 

main reason of the low latency result.  
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Figure 32 Latency of CNN design 

The second architecture which was implemented in hardware was the CNN based one described in 

detail in section 3.3. As it is shown in the yml configuration file in Figure 31, it was necessary to alter 

two configuration option compared to the yml file of the ANN design (Figure 28). First, the clock period 

needs to be changed to 8 ns and the resource factor was set at 8. The resource factor implies the 

number of multiplications performed by each multiplier. Those changes were necessary in order to 

implement the RTL project successfully. 

The CNN implementation constrained at 8ns, produce an RTL design of 125MHz frequency but the 

main issue of this hardware model is the achieved latency of 4,418 cycle (see Figure 32) which is far 

higher compared to the ANN implementation. In Figure 33, the resource utilization of the CNN 

implementation model is illustrated. This work makes use of 325 Block RAMs, 770 DSP units, 56,493 

Flip Flops and 79,740 Look Up Tables. Based on the FPGA available resources these results mean that 

11%, 21%, 6% and 18% of the above resources are utilized respectively.  

In terms of performance, the ANN implementation outperforms the CNN one, because it operates at 

a higher frequency (60% faster) and needs far less cycles to output the result. Based on the resource 

utilization though, the CNN hardware outperforms the ANN implementation since it utilizes almost 

42% less BRAMs, 49% less DSPs and 40% less Flip Flops and only in terms of LUTs, the CNN circuit uses 

50% more.  

Overall, the ANN hardware design is suggested since the main targets for that work were the 

frequency and latency metrics. 

 

Figure 33 Resource Utilization of the CNN design 
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3.5. Federation based processing mechanism 

The existing methods require large amounts of high-quality supervised data of the testing machine for 

training an effective diagnostic model. In real industrial scenarios, labelled condition monitoring data 

are usually difficult and expensive to collect. Different companies and factories have similar types of 

working machines, and they usually have their own supervised datasets for fault diagnosis. It is thus 

promising to integrate the data of similar devices across different parties for establishing a powerful 

fault diagnosis model. 

We assume that multiple clients are included in the federated learning system, and each client has 

insufficient training data which fail to build its fault diagnosis model independently. In order for the 

federation scheme to succeed, it is imperative that the fault diagnosis tasks of all the clients are 

identical, which indicates that different clients share the same label space and that the same fault 

diagnosis model is shared by the server and different clients. 

Thus, the federation scheme, as seen in Figure 34, is comprised of a federation server and multiple 

clients. The federation learning process, as seen in Figure 35, starts with the server creating the ML 

model architecture, such as the number of CNN layers, Fully Connected layers and their corresponding 

activation function amongst others. The server will instruct the clients with the model to work. The 

clients having a view only of their own dataset will generate a local limited model which in turn is sent 

to the federation server. The federation server will aggregate all the models into a new one and will 

send it to the clients to continue the learning process. This will continue until the global model has 

reached an acceptable accuracy level and will terminate the learning phase. 

 

Figure 34 Federation scheme 
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Figure 35 Federation learning process 

To correctly transport all models to and from the server and clients, we designed a very simple 

application protocol, using TCP as transport protocol, as shown in Figure 36. Depending upon the Type, 

the messages have different connotations. For Type equal to:  

0. The server is sending the initial model to the newly connected client. 

1. The server is sending the updated global model to all connected clients. 

2. The client is sending a learned model. 

3. The server is notifying the clients that the learning phase is complete. 

4. A client is requesting connection to the server and a Client ID.  

5. The Server is sending the Client ID (Sender ID will contain the Client ID) 
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Figure 36 Simple protocol for sending ML models 

The implementation of the complete process is shown in Figure 37. Initially (#1) the server and clients 

are instantiated. Upon instantiation of a new client, it will attempt to connect to the server (#2). Any 

newly connected client will be assigned a ClientID, which will be sent to the client via the SenderID 

field, in order for the server to keep track of which client has sent a model and to which it has already 

sent any response. The server having created the initial global model or having the evolved global 

model after a couple of learning phases have run, will send the current global model to any newly 

connected client (#3). The clients then train the next round of their local model (#4) and send the 

results to the server (#5). The server will aggregate all models and will calculate the next round of the 

global model (#6). Then the server will either send a termination message to the clients (#7) if the 

accuracy or rounds have reached a specific limit or will send the current global model (#7) and the 

process will continue from step 3. 

 

Figure 37 Implementation details of federation process 

3.6. Edge node functionality and Configuration updates (reconfiguration) 

One of the key characteristics in EnerMan is the ability to add new functionality in Edge nodes or 

reconfigure already installed ones. New edge node functionality can reside on a remote server and 
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would require a mechanism to install this functionality. This functionality could either be programs 

compiled for the specific edge node, e.g., the Ultra96v2, or hardware functionality for on board FPGAs 

built by tools such as Xilinx’s Vitis. The latter can be defined as xclbin, IP cores bundled in a unified 

container that can hold outputs of hardware compilers (SDAccel xocc) as well as software compilers 

(processor ELF formats for MPSoc).  

To download code and receive the output we leveraged Python’s remote processing call, the rpyc 

module. Using this module, the client, which is manifested by the remote server hosting the program, 

can upload the necessary code to the rpyc server, which is manifested by the edge node waiting for 

the new functionality, and then start the program as if the client was local to the edge device. 

Figure 38 depicts the initial setup, where the edge device’s IP is an input argument, and the setup 

creates the rpyc connection. Figure 39 demonstrates the code for uploading software (vadd_hls) and 

hardware (vadd.xclbin) code to the edge node and then executing and receiving the result. 

 

Figure 38 Setup of the rpyc connection 

 

Figure 39 Download and run functionality 
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4. EDGE NODE SECURITY ASPECTS 

As described in D2.1, traditionally, the Industrial Control Systems (ICSs) that are employed to control 

an industrial process, often referred to as Supervisory Control and Data Acquisition (SCADA) systems, 

are based on implementations lacking cyber-security considerations and practices. Reasons for this 

can be found in the lack of interoperability between different vendors and/or the adoption of 

proprietary protocols and data formats. Also, because, in general, these systems are "geographically 

isolated" with little to none connection to the outside networks. Ensuring interoperability between 

platforms and devices has two major challenges, i.e., their seamless operation and their security. The 

weakest link in this chain, from a cyber-security perspective, are the endpoints on SCADA systems, i.e., 

the Programmable Logic Controllers (PLCs) with their sensors and actuators. Not only is their firmware 

full of flaws with no regular update policy, but also, many of the most popularly used communication 

protocols lack authentication or encryption [4]. 

In legacy industrial deployments, the isolation of the SCADA deployments had been a viable option, 

however, in today's interconnected and technologically mobile world, true isolation is nearly 

impossible. It is, therefore, crucial that in EnerMan we tackle edge node security aspects efficiently 

since we are planning to collect data form the use case sites by interconnecting the edge nodes to the 

targeted ICSs.  

4.1. Security Architecture  

A high-level representation of the EnerMan security architecture is shown in Figure 40. Overall, its 

purpose is twofold. On the one hand, it is aimed at preventing malicious activities from becoming 

successful, i.e., it aims at reinforcing the flow of data such that they become immune to infection by 

malicious activity. The second involves the aspect of detection and, in this particular case, what we 

have is a mechanism for picking out unwanted activity that has managed to become part of the data 

flow. 

The architecture is comprised of several levels, each of which correspond to a different part of a typical 

system that is going to use the EnerMan framework. Hence, there is the Industrial Data, which 

originate from the fringes of the architecture, e.g., sensor modules as edge devices in a factory, the 

Secure Gateway that is a little further up the hierarchy, i.e., the edge node of the system, and, finally, 

the cloud server. 

At each of these points, as well as in-between, EnerMan is going to implement security features that 

will setup a strong security mechanism. Hence, starting from the edge devices, EnerMan utilises an 

intrusion detection mechanism named I2DS. This is implemented on MPSoC technology using the 

EnerMan edge/end node execution environment and is positioned right at the entry to the Data 

Aggregator, also co-hosted at the MPSoC. The I2DS operates on the data that are flowing in from the 

various edge devices used in the context of the various EnerMan use case providers’ industry setups. 

Having filtered the data and flagged any potentially malicious activity, the data is then processed inside 

the MPSoC by the data aggregator and, subsequently, it is encrypted for cyber attack prevention 

purposes. 

The encrypted data are going to fulfil TLS secure session communication protocol requirements, which 

will assist in the consolidation of a prevention mechanism between the MPSoC (edge devices) and 

Gateway (edge node) layers of the architecture. Just prior to the introduction of the MPSoC data into 

the gateway, a second Intrusion Detection System (IDS) mechanism is deployed. Hence, a detection 

mechanism just prior to the EnerMan gateway ensures that the encrypted data have indeed not been 
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corrupted. Subsequently, an Intrusion Prevention Systme (IPS) mechanism follows on the IDS-

processed data at the gateway-level of the architecture. 

Hence, and similar to the security steps followed at the EnerMan edge/end node MPSoC, the EnerMan 

gateway(s) will encrypt the data that are to be propagated further up the architecture, i.e., the 

EnerMan cloud devices, by ensuring that the TLS protocol standards are met for prevention purposes 

in the context of edge node and cloud communication. 

 

Figure 40 The EnerMan Security Architecture 

 

4.2. Security Mechanisms  

In this subsection we extend the work that has been presented in D2.1. Please refer to the D2.1 

deliverable for some of the concepts described in section 4.2 

4.2.1. Cybersecurity Attack Detection 

I2DS: Industrial Intrusion Detection System 

I2DS is the EnerMan intrusion detection mechanism that will be deployed across the system and at its 

very edges, i.e., it is the intrusion detection mechanism that will operate on the data coming in from 

the architecture’s edge devices. I2DS is going to be hosted by the EnerMan edge/end node Multi-

Processing System-on-Chip (MPSoC) devices, which employ Field-Programmable Gate Array (FPGA) 

technology. Hence, this first layer of intrusion detection capability is going to be implemented directly 

on (reconfigurable) hardware using the EnerMan edge/end-node execution environment described in 

Section 2. 

Specifically, I2DS is comprised of optimised modules that implement machine learning models for 

intrusion detection. The modules use rules for string searching that are appropriate for the particular 

industrial environments’ data. The implementation of the ML model’s architecture is to be developed 

using suitable frameworks so that the final design not only fulfills the functional criteria of the ML 
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model, but also offers satisfactory performance, such as a high data throughput as well as reduced 

power consumption. 

4.2.2. Cybersecurity Attack Prevention 

Application Gateway 

The WSO2 API Manager (APIM) is an API Gateway. Every call to APIs is rerouted to first pass through 

the WSO2 APIM which then forwards the request to the appropriate endpoint. This provides utilities 

such as the ability to allow/deny requests based on authorization status, enforce policies, modify the 

responses and requests’ contents, and limit traffic, among others. 

 

Figure 41 The Application Gateway overall architecture and the API Management. 

Figure 41 shows the structure of the API Management component. Users can make requests to the 

API Gateway either through a frontend, or directly. The gateway stands between the user and the 

backend, handling the authentication/authorization aspects. Developers may also use the endpoints 

in their own applications. This is made easier through the developer portal, a “storefront” for APIs 

where their specification is published to help developers incorporate it into their own tools. 

Messages that reach the API Gateway (Figure 42) are processed as follows:  

1. When a request hits the API Gateway, it is received by the HTTP/HTTPS transport, that is 
responsible for carrying messages in a specific format. The transport provides a receiver and 
a sender (for receiving and sending messages accordingly).  

2. The receiving transport selects a message builder, based on the message's content type, and 
uses the selected one to process the message's raw payload data and convert it into a 
common XML, which the Gateway mediation engine can then read and understand.  

3. The request is passed through a set of handlers that applies the quality of services on the 
request message. Furthermore, it enforces security, rate-limiting, and transformations on API 
requests if applicable.  

4. After all the requests are routed to the backend endpoint, a message formatter (selected 
based on the message's content type) is used to build the outgoing stream back into its original 
format depending on the message.  

5. The transport sends the message out from the Gateway.  
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Figure 42 Gateway Message Flow 

WSO2 APIM supports REST, SOAP, GraphQL, or Streaming APIs. For REST APIs, the WSO2 admin can 

either import already existing APIs in OpenAPI (formerly Swagger) format, or design and prototype a 

new API from scratch (eg. Figure 43). 

 

Figure 43 Welcome screen on WSO2 APIM, showing the admin all the available API types. 

 

Following either import or creation, the admin can then alter the Runtime Configurations for this 

specific API (Figure 44). Options exist for enforcing security policies (HTTP, HTTPS, or both), the type 

of security (OAuth, Basic, API Key), Cross-Origin Resource Sharing (CORS) configuration, request and 

response validation against the API definition, and Message Mediation for acting on the content of 

requests and responses. 
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Figure 44 Runtime Configurations for an API 

 

Figure 45 APIs appearing on the developer portal 

APIs created by or imported to the WSO2 APIM, also appear on the WSO2 developer portal (Figure 

45). There, developers can search APIs, view their documentation, try them out through a swagger-

like interface, and also view available SDKs (Figure 46). 
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Figure 46 Available options for an API published on the devportal.  

 

Main Features 

The Gateway supports the following features to control access and enforce security.  

• Supports JWT, OAuth2.0, Basic Auth, API Key, Mutual TLS, and more.  

• Supports in-memory subscription validation, that decouples runtime dependency on the Key 
Manager.  

• Provides multiple Key Manager support for authentication.  

• Restricts API access tokens to domains/IPs.  

• Validates APIs payload content against schemas.  

• Applies additional security policies to APIs (authentication and authorization).  

• Supports all standard OAuth2.0 grant types and allows extensions and additions to grants.  

• Works seamlessly with third-party OAuth2.0 providers, standard, or proprietary.  

• Allows blocking subscriptions due to non-payment, API abuse, etc.  

• Associates API to system-defined service tiers for quotas and rate-limits.  

• Generates JSON web tokens for consumption by back-end servers.  

• Leverages XACML for entitlements management and fine-grain authorization.  

• Provides threat protection, bot detection, and token-fraud detection.  

• Supports detection of abnormal system use through artificial intelligence and machine 
learning.  

Identity Server 

In addition to the Application Manager, WSO2 provides identity and access management through its 

Identity Server (IS). The IS can be used directly by administrators (or other users if proper authorization 

was provided), through its Management Console. Apart from the registered users, IS can be used as 

an identity provider for third party systems that have their own set of users. 

There are 3 main services the IS offers: 

• Authentication, the process of identifying an individual. Authentication merely ensures that 
the individual is who he or she claims to be.  

• Identity Administration, the process of creating new and modifying or deleting existing 
identities as well as managing the security entitlements associated with those identities.  

• Security, the process to provide secure access to resources based on standards and model for 
security 

 

All these functionalities are centralized to support the coordinated usage of the components 
and allow their interoperability. Once the users provide their credentials, they are 



 

48 
 

Deliverable No: D2.2 - Final version of EnerMan Data Collection 

and Management Components 

automatically authenticated on all applications enabling a Single Sign On (SSO) scenario 
between multiple heterogeneous authentication protocols.   

The IS needs to be configured and customized to integrate the different components, 
applications and services. The various components need to be registered in the IS as service 
provider and linked to the involved authentication protocol. The Open ID Connect and the 
SAML 2.0 authentication protocols are involved in the integration of the current 
components.   

The following figure (Figure 47) highlights one of the configuration steps needed to register 
one of the components on the IS.  

 

Figure 47 Configuration of a service provider with the different possible authentication protocols 

To start using the services offered by the IS the generic application needs to be registered in the IS. 

The registration process of an Open Id Connect (OIDC) relying party (RP) has the following steps:  

• Registration of the RPs in the IS (redirect URL and Relying Party name needed).  

• Communication of ClientId and secret values to the Relying Party.   
 The registration process of a Service provider using the SAML 2.0 authentication protocol has the 

following steps:  

• Registration of the SP in the IS.  

• IS/SP Metadata exchanging.  
 

The logic   

This API provides a secure method to protect resources. When an API consumer want to access these 

resources the API owner, following the OAuth2.0 specification and using the exposed API can validate 

the access to the resources.   
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Following the OAuth2.0 specification, the API owner (Resource owner) is responsible for preventing 

unauthorized users from accessing an API (or a Resource in general). For that to be possible the 

specification prescribes that API consumers send a valid OAuth2.0 access token along with each API 

call. Such access token must be sent as the HTTPS request parameter. Once the API Server gets the 

call it needs to validate the access token against the OAuth2.0 Authorization server, before processing 

the request and replying to the consumer API. The following figure (Figure 48) provides an overview 

of the process, it contains the authentication process, steps 1-8, and the protected API call, steps 9-

12.  

  

 

Figure 48 Authentication Process and API protection 
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5. DEMONSTRATION REPORT  

5.1. Federated Learning edge node processing mechanism  

As discussed in Section 3.5 and seen in Figure 37, the Federated Learning edge node processing 

mechanism is comprised of a federation server and multiple clients. In this demonstration report, we 

will showcase two clients connecting to a federation server and will attempt to reach an accuracy 

threshold of 70% within at most 5 rounds (we consider this accuracy level sufficient for the given 

problem). In effect, for the federation server to signal the end of the learning phase, either the global 

model will exceed an accuracy level on the validation data of 70% or the federation process, i.e. clients 

sending their model to the server and the server handing out a new global model, will stop after five 

rounds. 

For testing purposes, the dataset is one big spreadsheet file that is appropriately split into regions. 

Each client is randomly sampling different part of that excel file and in effect each client sees a 

complete different set of data. 

Figure 49 shows the initial setup of the server that calls the creation of the global model, as seen in 

Figure 50 which initiates an instance of the CNN class defined in Figure 51. Our CNN model is 

comprised of two sequential layers of 1D convolution with a batch normalization through a leaky ReLU 

activation function with a dropout probability of 50%, followed by two linear transformations. Once 

these have been setup, the server is ready to accept connections from clients. 

 

Figure 49 Initial setup of the server 
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Figure 50 Creation of the global model and test loader 

 

Figure 51 Class model of our CNN 
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Figure 52 showcases the high-level overview of the process. While the server has not finished, it will 

initially wait for new clients to connect or will wait for new models. While the server is awaiting for 

clients to complete their learning phase, as seen in Figure 53, it can also accept new incoming clients 

cand send them the current global model. Once all models have been received it will aggregate the 

clients’ models into the new global model and check the accuracy. This process will continue as long 

as the accuracy or the rounds threshold has not been reached. 

 

Figure 52 High level overview of server process 
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Figure 53 Server handling clients 

Figure 54 and Figure 55 showcase the server lifecycle. Initially the server starts and await connections 

at the TCP port 5000. Two clients connect and are assigned specific IDs, 1 and 2. The clients (1 and 2) 

once connected and identified receive their models and start the training process. Once they are done, 

they send the model to the server, which aggregates and tests the new global model. If the accuracy 

level is low, the model is sent back to the clients and the process continues. At some point a new client 

join, is connected and assigned number 3. In this demo, as a case study, the accuracy threshold of 70% 

is not reached and after 5 iterations the learning process ends. 
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Figure 54 Server initialization and connection from clients 

 

Figure 55 Server termination 

Figure 56 and Figure 57 demonstrate the connections of Client1 and Client2 to the server, getting the 

initial model, starting the training process, and ending after five rounds have passed. 
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Figure 56 Client1 learning process 
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Figure 57 Client2 learning process 

Figure 58 showcases the connection of Client3 after a couple of rounds have passed. Client3 does not 

start from the beginning, rather catches up with the Client1 and Client2 and continues the training 

process from the current global model that the federation server has. Client3 will terminate at the 

same time as Client1 and Client2 as the federation server has general knowledge of the current round 

and when the learning process has to end. 
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Figure 58 Client3 learning process 

5.2. Hardware Security Token (HST) capabilities and Secure communication using 

Quantum-Safe TLS  

5.2.1. HST concept and overall usage 

The HST has been briefly described in D2.1 regarding its overall concept and capabilities. In this 

subsection we provide a more practical insight of its usage and how it is extended to support quantum 

safe security. 

The HST is configured as a hardware/software codesigned application on the EnerMan intelligent edge 

node which is based on ARM microprocessors (e.g., ARM Cortex A family) and the EnerMan execution 

environment (an appropriate Linux distribution). The HST communicates with the underlying Linux OS 

through an external communication API. This interface is responsible for setting up the correct usage 

configuration of the HST during runtime through Command Line Input (CLI) commands issued for 

execution.  

A software-based Crypto-Library is the core of the HST functionality, handling the high-level processes 

required for the implementation of most of cryptographic protocols and functions available by the 

HST. These functions include, but are not limited, to the generation and validation of digital signatures 

(ECDSA and postquantum cryptography algorithms) and certificates (X.509), key agreement schemes 

such as Elliptic Curve Diffie Hellman Ephemeral (ECDHE), Key encapsulation Mechanisms, 

encryption/decryption based on AES (AES-CBC, AES-CCM, authenticated AES-GCM) and authenticated 

message integrity schemes (HMAC). Depending on the availability of a reconfigurable FPGA Fabric by 

the device in use by the HST, the various cryptographic operations are hardware accelerated by 
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dedicated IP cores. These cores accelerate asymmetric cryptography primitives and can be either fully 

customized hardware designs developed with the help of a Hardware Description Language (VHDL, 

Verilog) or accelerated algorithms with the use of High-Level Synthesis (HLS) tools. At runtime, the 

included driver for the cores in the software stack handles the propagation of the necessary data to 

an accelerator and polls for a ready signal to read back the correct output and complete the 

cryptographic operation. Adopting an HLS approach, where operations are hardware accelerated 

using built-in processes, can lead to a much faster development time compared to a fully custom 

design without sacrificing a lot of performance speedup.  

HST General Commands 

The basic usage of the HST can be summarized by the following command structure: 

./hst [options] [parameters] 

By executing the above command, the HST polls the Linux CLI for the following argument operators 

(options) coupled with their corresponding parameters. 

 Options: 
  -h Display usage syntax 
  -i Select input file 
  -o Select output file 
  -l Set syslog remote server IP 
  -p Set syslog remote server port 
  -c Parse cryptographic command 
Analyzing the above arguments into more detail, it is observed that with the[-i] operator, the HST 

loads an input file to be utilized for the execution of the various cryptographic protocols. Likewise, 

with the [-o] operator, a file is generated containing the output of a cryptographic command. In both 

cases, the type of files loaded or generated by the HST are defined accordingly by the nature of the 

cryptographic command under operation. The next pair of arguments is usually utilized together, as 

with [-l] and [-p] the IP and the port of the remote server is defined that will be used as log entry data 

collector, receiving JSON log alerts generated by the HST Logger in case of an unwanted event. 

The variety of cryptographic protocols and algorithms that the HST supports cannot be adequately 

described and executed by the general format of the CLI commands presented above. For this reason, 

the [-c] argument encapsulates by itself a second level of CLI inputs and arguments linked exclusively 

with the execution of the various cryptographic functions and the necessary data for their completion. 

This encapsulated command is being parsed as a parameter of the [-c] argument, in the format [-c] 

“crypto_command”. There is a broad range of cryptography commands as shown below: 

Symmetric Encryption/Decryption 

For encryption and decryption functionality, the HST supports the common AES standard. The 

available modes of operation are both the Block Cipher Mode of AES-CBC and the authenticated 

encryption mode of AES-GCM. In order to speed up the encryption and decryption performance of 

these functions, the HST includes the acceleration component embedded as a coprocessor to the 

ARM-A53 processor. For example, a typical AES-GCM encryption command would be given as follows: 

./hst [-i] [data_file] [-o] [ciphertext_file] [-c] “aesgcm [-e] [key_file] [nonce] [aad]” 

In this example, an authenticated encryption using AES-GCM is taking place, encrypting the data 

stored in the data_file and using the key stored in the key_file. The nonce and the Additional 

Authentication Data (AAD) are parsed from the command line as HEX numbers with the prefix “0x”. 

This prefix is added to any variable that needs to be used as a raw number, and the HST handles the 
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internal parsing and tokenization of the whole cryptographic command embedded in the quotation 

marks. The encrypted output can either be directly printed on the command line or stored in a file 

marked by the [-o] operator (in this case the ciphertext_file). 

Message Integrity 

Most embedded security applications require data integrity capabilities. The HST supports a variety of 

message integrity algorithms, like SHA128, SHA256, SHA384 or authenticated message integrity in the 

form of HMAC_SHA256. A sample command syntax follows: 

./hst [-l] [dest_IP] [-p] [dest_port] [-i] [data_file] [-c] “hmac [key_file] [hash]” 

In this example, it is assumed that we want to validate a given hash product with the same key it was 

produced. The hash is parsed in HEX form, and upon completion, the HST computes the hashed value 

of the data_file and compares it with the parsed hash. In case of a hash mismatch, the HST Logger 

generates a JSON log for a “Message Integrity failure” event. 

Elliptic Curve Cryptography 

Used mainly for authentication purposes, Elliptic Curve Cryptography (ECC) is widely adopted in the 

embedded domain by offering lightweight solutions for digital signatures and certificates compared 

to the more traditional RSA algorithm. Thus, the HST supports digital signatures using the Elliptic Curve 

Digital Signature Algorithm (ECDSA), hybrid encryption with the Elliptic Curve Integrated Encryption 

Scheme (ECIES), as well as key agreement protocols with Elliptic Curve Diffie-Hellman (ECDH). A 

sample command for issuing digital signatures with ECDSA is presented below: 

./hst [-l] [dest_IP] [-p] [dest_port] [-i] [data_file] [-o] [signature_file] [-c] “ecdsa [key_file] [-s]” 

The file containing the ECDSA signature is the product of this command, where an EC key (key_file) is 

used for digitally signing the data contained in data_file. The prefix [-s] denotes the signing procedure. 

Likewise, an ECDSA digital signature verification is shown in the below example command: 

./hst [-l] [dest_IP] [-p] [dest_port] [-i] [data_file] [-c] “ecdsa [key_file] [-v] [signature_file]” 

As can be easily deduced, the signature_file generated by the signing function is now an input 

argument of the [-v] operator. If the result of this function deems the signature invalid, the HST Logger 

generates a log alert with an “Authentication Failure” identifier. This log is both stored locally and sent 

to a remote server with IP and port issued by the [-l] and [-p] operators respectively. 

Certificate Generation/ Validation 

An additional functionality of the HST is the fact that it can act as a pseudo Certificate Authority (CA). 

The X.509 certificate protocol stack, alongside the encoding requirements presented by the ASN.1 

encoding algorithm, are present in the HST and provide the functionality of generating and validating 

X.509 certificates. This capability has the potential to aid use-cases and application scenarios where a 

lightweight certificate management solution can provide authentication and trust between multiple 

entities. Given a scenario of that type, an assumption that must be made is that there must be an HST 

considered as a pseudo-CA, able to provide basic and lightweight certificates. A different HST that 

wants to own a certificate should firstly generate and transmit a valid Certificate Signing Request 

towards the CA. After that step, the CA can generate a certificate containing the requester’s Public 

Key (PK). In the example below, a certificate validation operation takes place, validating with the CA’s 

PK key whether a X.509 certificate is valid. If the validation is successful, the certificate’s owner’s PK is 

considered to truly belong to this owner, and it is extracted into its own key file ready to be utilized 

quickly and with established trust for various authentication purposes. 
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./hst [-l] [dest_IP] [-p] [dest_port] [-i] [certificate] [-o] [public_key] [-c] “x509 [CA_key_file] [-v]” 

With a method that has already been presented in the previous cryptographic examples, the 

certificate file is loaded as a parameter of the [-i] operator. The [-v] enables the validation 

mode for the x509 command, and upon success the output file that is generated contains the 

certificate’s owner’s PK. If validation proves false for data integrity reasons or mismatches in 

either the CA’s PK or the certificate PK, then the HST Logger is triggered with an 

“Authentication Failure” identifier. 

PostQuantum TLS 1.3 additions 

The functionality of the Hardware Security Token has been enhanced by offering a modified version 

of TLS 1.3 using post-quantum resilient Digital Signature Schemes. Basis for this implementation is the 

robust and lightweight WolfSSL, an Embedded TLS Library, which has been in-house modified and 

adapted to utilize post-quantum schemes. More details on how the Wolfssl library was enhanced with 

quantum safe algorithms can be found in subsection 5.2.2 

In order to properly setup a TLS connection, the certificate generation and validation capabilities of 

the HST were upgraded with the addition of lightweight X.509 post-quantum certificates. Built for ease 

of use in resource-constrained environments, these X.509 certificates are based on the Dilithium 

Digital Signature Algorithm and contain only the necessary fields required for a correct certificate 

validation. 

Thus, WolfSSL’s source code was modified to handle the Dilithium certificates, and the library was 

compiled onboard the HST using the arm-gcc-none-eabi toolchain for the ARM Cortex - A53 chipset. 

The inclusion of the library to the HST is realized by the creation of a new command, focused on 

instantiating the TLS connection between the host and the client. A sample format of such command 

for the host side to setup a TLS connection and start listening for clients is presented below:  

./hst96 -c "tls -svl TLS13-AES256-GCM-SHA384" 

Likewise, for a secure file transfer to be realized to the host, a client can execute the following 

command, where [input_file] is the path to the desired file and [Host_IP] denotes the Host IP: 

./hst96 -i [input_file] -c "tls -cvh [Host_IP] -l TLS13-AES256-GCM-SHA384" 

By using this format, we take advantage of the functionality of WolfSSL through the CLI provided by 

the HST itself. In this instance, the agreed upon TLS encryption algorithm is the ARM accelerated 

version of AES256-GCM. 

5.2.2. Adding Quantum Safe TLS 1.3 in the HST 

As quantum computers are expected to become realistic in the next few years, the 

security/cryptography landscape will become completely different since all the traditional, widely 

used, public key cryptography algorithms will no longer be considered secure. This expected dystopic 

reality has pushed NIST (National Institute of Standards and Technology) to start in 2018 a competition 

for quantum computing safe cryptography algorithms to could act as secure public key cryptography 

standards in the presence of quantum computer attacks (stemming from Schor’s algorithm). The 

competition draws to a close in 2022 and the new Postquantum Cryptography standard will be 

announced. This will create an imminent need for implementation of the finalist (if not only the single 

finalist NIST candidate) into existing security protocols.  In EnerMan, taking into account that new 

industrial control systems need to be secure and remain secure for a long period, we believe that this 

new cryptography reality should be included in all EnerMan related solutions. This rational has led to 
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the adaptation of the extremely popular TLS 1.3 security protocol to a quantum safe version. In order 

for the TLS protocol to operate with post-quantum algorithms, the first action to be performed is to 

integrate an existing, secure, postquantum cryptography implementation like the PQclean library to 

the protocol. Similarly, the PQM4 library provides implementations of PQC algorithms that are 

optimized for ARM Cortex-M4 processors.  As a starting point for a TLS library, we use the Wolfssl 

library that is one of the few TLS libraries supporting the latest 1.3 version of the protocol even for 

low-end embedded systems.  

In the wolfssl library we integrate the lwIP library for supporting of network connectivity and then we 

adapt the TLS protocol itself in order to support the Key Encapsulation Mechanism (instead of the 

traditional key agreement schemes) provided by PQC schemes.  

Apart from the code itself, the PQ algorithms require the usage of some cryptographic primitives. 

Specifically, all of the adopted algorithms make use of the Keccak primitives, SHA-3 and SHAKE-256 

[6] The provided implementations of these algorithms from the mupq project [5]has been adopted to 

our work (a simple, C code implementation). 

In order to make the wolfSSL TLS 1.3 messages on the handshake layer post-quantum compatible, the 

following architectural adaptations/adjustements have been made in the wolfSSL library: 

• Extension of ``Supported Groups", 

• Extension of ``Signature Algorithms", 

• Key Encapsulation Mechanism changes/support and 

• Post-Quantum Digital Certificates support. 

In Figure 59, the overall post-quantum adapted handshake message exchanges are presented in detail 

indicating the PQ operations that are performed in each phase of the TLS handshake. One important 

thing to note, is that wolfSSL, when acting as a server using RSA, immediately after creating a 

signature, runs the Verify operation to check for signature faults. We mimicked this behaviour on our 

PQ TLS adaptation. Although it may be redundant, it only adds a minor overhead on our 

measurements. In the following subsections the changes are described in more details. 
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Figure 59 Created postquantum handshake version of TLS1.3 for embedded systems 

Supported Groups 

The ClientHello message, the first message that the client sends to initiate the handshake, consists of 

several fields, one of which is the Extensions field. In this field, the client extends the information 

provided by the rest of the ClientHello fields and plays a crucial role in TLS 1.3. One of the fields among 

the Extension field, as shown in Figure 59, is the field Supported Groups. In this field, the client sends 

a list of key exchange algorithms, as encoded identifiers (codepoints), in order of preference, so that 

the server can select one of them to be used in the handshake. These identifiers are called, Named 

Groups, and are defined for each supported algorithm by the protocol itself. To use post-quantum 

algorithms, we have introduced our own Named Groups. In order for the wolfSSL library to be inter-

operable with other popular libraries, we decided to choose the codepoints that are being used by 

Open Quantum Safe fork of OpenSSL library. The codepoints for the post-quantum algorithms are 

shown in the following Table along with some traditional algorithms' codepoints. 
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Table 1. additional TLS1.3 Handshake codepoints for PQC schemes 

 
 

 

Signature Algorithms 

Another useful field on the Extension field, is the ``Signature Algorithms'' field where the client 

provides its preference on the signature algorithms that it supports, regarding the CertificateVerify 

field. This means that this signature algorithm will be used to sign the transcript of the data exchanged 

by the server and to be verified by the client. Similar to the extension ``Supported Groups'', apart from 

the predefined codepoints for each algorithm we introduce our own codepoints for the post-quantum 

digital signature algorithms that the PQ TLS wolfSSL can support. The codepoints that have been added 

are compliant with the Open Quantum Safe fork of OpenSSL library, as shown in Table 1 along with 

some of the traditional algorithms' codepoints. 

Key Encapsulation Mechanism Support/Adaption 

All the post-quantum algorithms that resemble traditional key exchange schemes participating in the 

NIST competition are Key Encapsulation Mechanism (KEM) schemes. However, the key exchange 

method that is used in TLS is the traditional (Elliptic Curve) Diffie-Hellman Key Exchange. In order to 

adapt the key exchange to the post-quantum environment, in our proposed work the key exchange 

mechanism of TLS 1.3 is transformed into a KEM scheme through some architectural adaptation.  

Initially, the client generates a key pair and sends the public key to the server with the ClientHello 

message. The server, using the client's public key, calls the Encapsulation function that produces a 

Ciphertext, which is sent to the client with the ServerHello message, and a Shared Secret, that the 

server keeps, as it is the actual shared key. The client, upon receiving the Ciphertext calls the 

Decapsulation function, together with its Secret Key and produces the same Shared Secret as the 

server. Now, both the client and the server, share the same key and have completed the key exchange 

scheme. These exchanged messages are shown in Figure 59 as the Ephemeral PQ Key Generate, PQC 

Encapsulate and PQC Decapsulate operations. 
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Digital Certificates Support 

Another important object that needs to be modified in order for the TLS to work with post-quantum 

algorithms, is the digital certificate. These are objects that bound an entity, for example a server, with 

its public key by introducing a signature from a trusted third party. This can occur repeatedly by 

intermediate third parties, forming what is known as a ̀ `chain of certificates''. The X.509, the standard 

that digital certificates usually follow on protocols like TLS., contains useful information about the 

entity, like for example: the entity's name, email, web address etc, the issue and expiration date of 

the certificate, the public key of the owner, the digital signature algorithm code that is used, the digital 

signature itself, etc. 

For the production of these digital certificates using post-quantum cryptographic algorithms, the Open 

Quantum Safe's fork of OpenSSL was used. Through this library we generated digital certificates using 

the OpenSSL's API with support for all the post-quantum algorithms that are evaluated in this paper. 

Our goal is to produce a digital certificate for the server, as it is the only one to authenticate itself. To 

achieve that, we introduced a base ``Certificate Authority'' (CA) that can issue other certificates 

making a chain of trust up until the server. In our paper, this chain is of length two, as the server's 

certificate is directly signed by the CA. To accomplish this, we created a digital certificate for the CA, 

which is self-signed and then we produced a digital certificate for the server which is then signed by 

the CA. Thus, a server certificate is produced, verifiable by our basic CA.  

For the sake of simplicity, all the certificates in the chain employ the same signature algorithm each 

time. This is also the case for both the certificate's signature and the signing operation on the 

CertificateVerify message. For example, when measuring the performance of Dilithium2, CA's 

certificate and server's certificate have Dilithium2 signatures and the CertificateVerify message is 

signed using Dilithium2, as well. 

5.3. AI Industrial Intrusion Detection 

5.3.1. Set-up the board 

For this demo we are using Pynq, which is an open-source initiative that facilitates the use of Xilinx 

hardware devices, such as the EnerMan MPSoC. PYNQ offers and supports Python Productivity 

bootable images that can be used on a variety of Xilinx development boards, which host the Zynq 

MPSoC, e.g., Pynq-Z1, Pynq-Z2 and ZCU104. In addition, using the Pynq python library we can deploy 

Python scripts on the reconfigurable hardware (FPGA) of the MPSoC. In this demo we use the ZCU104 

evaluation board. 

5.3.2. Set-up the host 

The training phase is conducted on a host PC using the Xilinx FINN docker container with all the tools 

and libraries for training the target AI model. Xilinx provides Jupyter Notebooks within the docker for 

easier development. The host also needs Xilinx Vivado HLS installed, for the generation of the bitfile 

that will be downloaded into the reconfigurable part (Programmable Logic (PL)) of the MPSoC, which 

is linked with the docker container. To run the docker we just have to run on the host the command 

./run-docker.sh notebook. 

5.3.3. Train a quantized MLP with Brevitas 

Quantize the dataset 

The first step for a Quantized Neural Network (QNN) training is to binarize the dataset. In this demo 

we are using the TON_IoT modbus dataset created by the UNSW Sydney. This can be achieved with a 

python script called dataloader_quantized.py. This script drops irrelevant columns of the dataset such 

as date, time, and the type of the attack and binarizes all the useful data for the training and keeps 
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the label that shows whether we have an attack or not for this data. With this dataset, for every input 

of four integers, the dataloader creates 80 bits. The final quantized dataset is saved in a numpy 

compressed format (.npz). This script also divides the dataset into training dataset (~80%) and test 

dataset (~20%). 

Define and train the QNN with Brevitas 

For the training phase we use the quantization-aware training (QAT) capabilities offered by Brevitas. 

Our MLP has four fully-connected (FC) layers in total: three hidden layers with 64 neurons, and a final 

output layer with a single output, all using 2-bit weights. We also use 2-bit quantized ReLU activation 

functions and apply batch normalization between each FC layer and its activation. The number of 

epochs is 10 and the learning rate 0.01. The notebook gives us post-training information about the 

training loss and test accuracy. The final test accuracy of the model is 0.88. 

 

Figure 60 Training loss per iteration 

 

 

Figure 61 Test accuracy per iteration 
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Export ONNX model 

Before exporting we can make some changes to our trained network (network surgery). In this case 

we are padding the input. Our input vectors are 80-bit. The FINN compiler expects an ONNX model 

as input. ONNX is an open format built to represent machine learning models and the output of our 

model is presented below (Figure 62). 

 

 

 

Figure 62 The exported ONNX model in Netron 

 

5.3.4. Import model into FINN and compare it with Brevitas execution 

To import the ONNX model into FINN, the wrapper around the ONNX model provides several helper 

functions so we can extract information about the structure and properties of the model. Before the 

comparison with the Brevitas execution, we need to prepare our FINN-ONNX model. With the Graph 

transformations in FINN we transform the model into a synthesizable hardware description. Finally, 

we can compare the two models by calling our inference helper functions for each input and 

comparing the outputs. 
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5.3.5. Synthesis of the accelerator and generation of the bitfile 

In this step we use the FINN compiler to generate an FPGA accelerator with a streaming dataflow 

architecture from our QNN. With the use of the Vivado HLS we map all the layers of the model into 

hardware description. Hence, we create a hardware architecture with parallel layers that are 

connected with FIFOs to form a full accelerator. Because the synthesis phase is time consuming, we 

always test our architecture through rtl simulation. 

 

Figure 63 The steps towards the bitfile generation 
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Figure 64 Block design architecture in Vivado 

The final output of this process is the bitfile (and the accompanying .hwh file) that will be downloaded 

to the board (Figure 63). To test the accelerator on the board, we put a copy of the dataset and a 

premade Python script that validates the accuracy into the driver folder, then make a zip archive of 

the whole deployment folder. Finally, we send the zip folder to the board and run the commands 

below for testing our accelerator. 

unzip deploy-on-pynq.zip -d finn-I2DS-demo 

cd finn-I2DS-demo/driver 

sudo python3.6 -m pip install bitstring 

sudo python3.6 validate_TONIoT.py --batchsize 1000 
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Figure 65 Terminal Output 

Figure 65 Terminal Outputshows a typical example of the type of results that the execution of the AI 

model on hardware, generates. Hence, processing is applied on sets of data that are fed into the AI 

processing model in batches. In the figure above, the test data have been split and fed into the model 

in ten distinct batches. Subsequently, when the complete set of data has been processed, the process 

returns the effectiveness of the particular model given the specific set of data, i.e., accuracy. Note that 

the TSI I2DS solution can easily achieve an accuracy of 90%, which can be considered high level. 

Finally, Table 2, lists the characteristics and specifications that are particular to the example 

demonstrated here. It pertains to the actual hardware resources occupied as well as the latencies that 

result from different stages of the process. For instance, fold and pack input relate to the preparation 

of the actual data for introduction into the model, whereas the copy_input_data_to_device and 

copy_output_data_from_device indicate the cost of moving the data between the CPU and 

accelerator memories. 

Table 2 Metrcics of I2DS 

LUTs 3208 

FFs 4643 

BRAM 7 

DSPs 0 

Throughput (im/s) 1177844 

cycles 218 

runtime (ms) 0.849 

fold_input (ms) 0.067 

pack_input (ms) 3.040 
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copy_input_data (ms) 0.980 

unpack_output (ms) 253.8 

copy_output_data (ms) 0.261 

unfold_output (ms) 0.040 
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6. CONCLUSION  

In this deliverable, the final research, design, and implementation activities of T2.1 and T2.4 as well as 

some implemented components of T2.2 have been presented. This complements the work presented 

in D2.1 from M6 to M14 by adding missing aspects that were available at M18 when the WP2 is 

concluded. The report of the overall work that has been performed in WP2 tasks 2.1 and 2.4 can be 

captured in its wholeness by considering both D2.1 and D2.2 deliverables. This includes the design and 

development of the EnerMan intelligent edge node execution environment and its various 

components, the design and implementation flow of intelligent operations to be executed in the edge 

node (using as proof of concept the energy consumption prediction case), the data harmonization 

mechanism and the security related operation on the edge and between the edge and the system 

layer.  
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